Operational modal analysis (OMA) has been widely used for large structures. However, measured signals are inevitably contaminated with noise and may not be clean enough for identifying the modal parameters with proper accuracy. The traditional methods to estimate modal parameters in noisy situation are usually absorbing the “noise modes” first, and then using the stability diagrams to distinguish the true modes from the “noise modes.” However, it is still difficult to sort out true modes because the “noise modes” will also tend to be stable as the model order increases. This study develops a noise reduction procedure for polyreference complex exponential (PRCE) modal analysis based on ambient vibration responses. In the procedure, natural excitation technique (NExT) is first applied to get free decay responses from measured (noisy) ambient vibration data, and then the noise reduction method based on solving the partially described inverse singular value problem (PDISVP) is implemented to reconstruct a filtered data matrix from the measured data matrix. In our case, the measured data matrix is block Hankel structured, which is constructed based on the free decay responses. The filtered data matrix should maintain the block Hankel structure and be lowered in rank. When the filtered data matrix is obtained, the PRCE method is applied to estimate the modal parameters. The proposed NExT-PDISVP-PRCE scheme is applied to field test of a jacket type offshore platform. Results indicate that the proposed method can improve the accuracy of OMA.

References

References
1.
Li
,
H. J.
,
Wang
,
J. R.
, and
Hu
,
S.-L. J.
,
2008
, “
Using Incomplete Modal Data for Damage Detection in Offshore Jacket Structures
,”
Ocean Eng.
,
35
(
17–18
), pp.
1793
1799
.
2.
Wang
,
S. Q.
,
2013
, “
Damage Detection in Offshore Platform Structures From Limited Modal Data
,”
Appl. Ocean Res.
,
41
, pp.
48
56
.
3.
Liu
,
F. S.
,
Li
,
H. J.
,
Li
,
W.
, and
Yang
,
D. P.
,
2014
, “
Lower-Order Modal Parameters Identification for Offshore Jacket Platform Using Reconstructed Responses to a Sea Test
,”
Appl. Ocean Res.
,
46
, pp.
124
130
.
4.
Liu
,
F. S.
,
Li
,
H. J.
,
Li
,
W.
, and
Wang
,
B.
,
2014
, “
Experiment Study of Improved Modal Strain Energy Method for Damage Localization in Jacket-Type Offshore Wind Turbines
,”
Renewable Energy
,
72
, pp.
174
181
.
5.
Liu
,
F. S.
,
Lu
,
H. C.
, and
Li
,
H. J.
,
2016
, “
Dynamic Analysis of Offshore Structures With Non-Zero Initial Conditions in the Frequency Domain
,”
J. Sound Vib.
,
366
, pp.
309
324
.
6.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Applications
,
Research Studies Press
,
Baldock, Hertfordshire, UK
.
7.
Maia
,
N. M. M.
,
Silva
,
J. M.
,
He
,
J.
,
Lieven
,
N. A. J.
,
Lin
,
R. M.
,
Skingle
,
G. W.
,
To
,
W. M.
, and
Urgueira
,
V. A. P.
,
1997
,
Theoretical and Experimental Modal Analysis
,
Research Studies Press
,
Taunton, Somerset, UK
.
8.
Ibrahim
,
S. R.
, and
Mikulcik
,
E. C.
,
1973
, “
A Time Domain Modal Vibration Test Technique
,”
Shock Vib. Bull.
,
43
(
4
), pp.
21
37
.http://www.dtic.mil/dtic/tr/fulltext/u2/a112526.pdf
9.
Brown
,
D.
,
Allemang
,
R.
,
Zimmerman
,
R.
, and
Mergay
,
M.
,
1979
, “
Parameter Estimation Techniques for Modal Analysis
,”
SAE
Paper No. 790221.
10.
Void
,
H.
, and
Rocklin
,
G. F.
,
1982
, “
Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computers
,”
International Modal Analysis Conference & Exhibit
, Orlando, FL, Nov. 8–10, pp.
542
548
.
11.
Vandiver
,
J. K.
,
Dunwoody
,
A. B.
,
Campbell
,
R. B.
, and
Cook
,
M. F.
,
1982
, “
A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique
,”
ASME J. Mech. Des.
,
104
(
2
), pp.
307
313
.
12.
James
,
G. H.
, III
,
Carne
,
T. G.
, and
Lauffer
,
J. P.
,
1995
, “
The Natural Excitation Technique (NExT) for Modal Parameter Extraction From Operating Structures
,”
Int. J. Anal. Exper. Modal Anal.
,
10
(
4
), pp.
260
277
.https://www.researchgate.net/profile/Thomas_Carne/publication/247932669_The_natural_excitation_technique_NExT_for_modal_parameter_extraction_from_operating_structures/links/54c458510cf2911c7a4ead25.pdf
13.
Juang
,
J. N.
,
1994
,
Applied System Identification, Englewood Cliffs
,
PTR Prentice Hall
, Upper Saddle River, NJ.
14.
Van Overschee
,
P.
, and
De Moor
,
B.
,
1996
,
Subspace Identification for Linear System: Theory, Implementation, Application
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
15.
Peeters
,
B.
, and
De Roeck
,
G.
,
2001
, “
Stochastic System Identification for Operational Modal Analysis: A Review
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
4
), pp.
659
667
.
16.
Allemang
,
R. J.
, and
Brown
,
D. L.
,
1998
, “
A Unified Matrix Polynomial Approach to Modal Identification
,”
J. Sound Vib.
,
211
(
3
), pp.
301
322
.
17.
Braun
,
S.
, and
Ram
,
Y. M.
,
1987
, “
Determination of Structural Modes Via the Prony Method: System Order and Noise Induced Poles
,”
J. Acoust. Soc. Am.
,
81
(
5
), pp.
1447
1459
.
18.
Braun
,
S.
, and
Ram
,
Y. M.
,
1987
, “
Time and Frequency Identification Methods in Over-Determined Systems
,”
Mech. Syst. Signal Process
,
1
(
3
), pp.
245
257
.
19.
Hu
,
S.-L. J.
,
Bao
,
X. X.
, and
Li
,
H. J.
,
2010
, “
Model Order Determination and Noise Removal for Modal Parameter Estimation
,”
Mech. Syst. Signal Process
,
24
(
6
), pp.
1605
1620
.http://dx.doi.org/10.1016/j.ymssp.2010.01.005
20.
Hu
,
S.-L. J.
,
Bao
,
X. X.
, and
Li
,
H. J.
,
2012
, “
Improved Polyreference Time Domain Method for Modal Identification Using Local or Global Noise Removal Techniques
,”
Sci. China Phys., Mech., Astr
,
55
(
8
), pp.
1464
1474
.
21.
Bao
,
X. X.
,
Li
,
C. L.
, and
Xiong
,
C. B.
,
2015
, “
Noise Elimination Algorithm for Modal Analysis
,”
Appl. Phys. Lett.
,
107
(
4
), p.
041901
.
23.
Hu
,
S.-L. J.
, and
Li
,
H. J.
,
2008
, “
A Systematic Linear Space Approach on Solving Partially Described Inverse Eigenvalue Problems
,”
Inverse Probl.
,
24
(
3
), p.
035014
.
24.
Bao
,
X. X.
,
Cao
,
A. X.
, and
Zhang
,
J.
,
2016
, “
Noise Reduction for Modal Parameters Estimation Using Algorithm of Solving Partially Described Inverse Singular Value Problem
,”
Smart Mater. Struct.
,
25
(
7
), p.
075035
.
25.
Caicedo
,
J. M.
,
2011
, “
Practical Guidelines for the Natural Excitation Technique (NExT) and the Eigensystem Realization Algorithm (ERA) for Modal Identification Using Ambient Vibration
,”
Exp. Tech.
,
35
(
4
), pp.
52
58
.
You do not currently have access to this content.