Flow systems with highly nonlinear free/moving surface motion are common in engineering applications, such as wave impact and fluid-structure interaction (FSI) problems. In order to reveal the dynamics of such flows, as well as provide a reduced-order modeling (ROM) for large-scale applications, we propose a proper orthogonal decomposition (POD) technique that couples the velocity flow field and the level-set function field, as well as a proper normalization for the snapshots data so that the low-dimensional components of the flow can be retrieved with a priori knowledge of equal distribution of the total variance between velocity and level-set function data. Through numerical examples of a sloshing problem and a water entry problem, we show that the low-dimensional components obtained provide an efficient and accurate approximation of the flow field. Moreover, we show that the velocity contour and orbits projected on the space of the reduced basis greatly facilitate understanding of the intrinsic dynamics of the flow systems.

References

References
1.
Abramson
,
H. N.
,
Bass
,
R. L.
,
Faltinsen
,
O.
, and
Olsen
,
H. A.
,
1976
, “
Liquid Slosh in LNG Carriers
,”
Tenth Symposium on Naval Hydrodynamics
, Cambridge, MA, pp. 371–388.
2.
Ibrahim
,
R. A.
,
Pilipchuk
,
V. N.
, and
Ikeda
,
T.
,
2001
, “
Recent Advances in Liquid Sloshing Dynamics
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
133
199
.
3.
Peregrine
,
D. H.
,
2003
, “
Water-Wave Impact on Walls
,”
Annu. Rev. Fluid Mech.
,
35
(
1
), pp.
23
43
.
4.
Kapsenberg
,
G. K.
,
2011
, “
Slamming of Ships: Where Are We Now?
,”
Philos. Trans. R. Soc. A
,
369
(
1947
), pp.
2892
2919
.
5.
Van Paepegem
,
W.
,
Blommaert
,
C.
,
De Baere
,
I.
,
Degrieck
,
J.
,
De Backer
,
G.
,
De Rouck
,
J.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
Matthys
,
S.
, and
Taerwe
,
L.
,
2011
, “
Slamming Wave Impact of a Composite Buoy for Wave Energy Applications: Design and Large-Scale Testing
,”
Polym. Compos.
,
32
(
5
), pp.
700
713
.
6.
Manzoni
,
A.
,
Quarteroni
,
A.
, and
Rozza
,
G.
,
2012
, “
Computational Reduction for Parametrized PDEs: Strategies and Applications
,”
Milan J. Math.
,
80
(
2
), pp.
283
309
.
7.
Fedorenko
,
R. P.
,
1961
, “
A Relaxation Method for Solving Elliptic Difference Equations
,”
Zh. Vychisl. Mat. Mat. Fiz.
,
1
(4), pp.
922
927
.http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=8014&option_lang=eng
8.
Bakhvalov
,
N. S.
,
1966
, “
On the Convergence of a Relaxation Method With Natural Constraints on the Elliptic Operator
,”
USSR Comput. Math. Math. Phys.
,
6
(
5
), pp.
101
135
.
9.
Brandt
,
A.
,
1977
, “
Multi-Level Adaptive Solutions to Boundary-Value Problems
,”
Math. Comput.
,
31
(
138
), pp.
333
390
.
10.
Zhang
,
Y.
,
Peszy´ nska
,
M.
, and
Yim
,
S.
,
2013
, “
Coupling of Viscous and Potential Flow Models With Free Surface for Near and Far Field Wave Propagation
,”
Int. J. Numer. Anal. Model., Ser. B
,
4
(3), pp.
256
282
.http://www.math.ualberta.ca/ijnamb/Volume-4-2013/No-3-13/2013-03-05.pdf
11.
Zhang
,
Y.
,
Del-Pin
,
F.
, and
Yim
,
S.
,
2014
, “
A Heterogeneous Flow Model Based on Domain Decomposition Method for Free–Surface Fluid–Structure Interaction Problems
,”
Int. J. Numer. Methods Fluids
,
74
(
4
), pp.
292
312
.
12.
Pearson
,
K.
,
1901
, “
On Lines and Planes of Closest Fit to Systems of Points in Space
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.
13.
Hotelling
,
H.
,
1933
, “
Analysis of a Complex of Statistical Variables Into Principal Components
,”
J. Educ. Psychol.
,
24
(
6
), pp.
417
441
.
14.
Lorenz
,
E. N.
,
1956
,
Empirical Orthogonal Functions and Statistical Weather Prediction, Technical Report Statistical Forecasting Project, Report 1
,
MIT
,
Cambridge, MA
.
15.
Loève
,
M.
,
1978
,
Probability Theory II
1st ed.
, (Graduate Texts in Mathematics, Vol.
46
),
Springer Verlag
, New York.
16.
Lumley
,
J.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
,
A. M.
Yaglom
, and
V. I.
Tatarski
, eds.,
Nauka
,
Moscow, Russia
, pp.
166
178
.
17.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
18.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part II: Symmetries and Transformations
,”
Q. Appl. Math.
,
45
(
3
), pp.
573
582
.
19.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part III: Dynamics and Scaling
,”
Q. Appl. Math.
,
45
(
3
), pp.
583
590
.
20.
Willcox
,
K.
, and
Peraire
,
J.
,
2002
, “
Balanced Model Reduction Via the Proper Orthogonal Decomposition
,”
AIAA J.
,
40
, pp.
2323
2330
.
21.
Lucia
,
D. J.
,
Beran
,
P. S.
, and
Silva
,
W. A.
,
2005
, “
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
,”
J. Aircr.
,
42
(
2
), pp.
509
518
.
22.
Lieu
,
T.
,
Farhat
,
C.
, and
Lesoinne
,
M.
,
2006
, “
Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5730
5742
.
23.
Utturkar
,
Y.
,
Zhang
,
B.
, and
Shyy
,
W.
,
2005
, “
Reduced-Order Description of Fluid Flow With Moving Boundaries by Proper Orthogonal Decomposition
,”
Int. J. Heat Fluid Flow
,
26
(
2
), pp.
276
288
.
24.
Williams
,
M. O.
,
Shlizerman
,
E.
,
Wilkening
,
J.
, and
Kutz
,
J. N.
,
2012
, “
The Low Dimensionality of Time-Periodic Standing Waves in Water of Finite and Infinite Depth
,”
SIAM J. Appl. Dyn. Syst.
,
11
(
3
), pp.
1033
1061
.
25.
Chalikov
,
D.
, and
Sheinin
,
D.
,
2005
, “
Modeling Extreme Waves Based on Equations of Potential Flow With a Free Surface
,”
J. Comput. Phys.
,
210
(
1
), pp.
247
273
.
26.
Grilli
,
S.
,
Guyenne
,
P.
, and
Dias
,
F.
,
2001
, “
A Fully Non-Linear Model for Three-Dimensional Overturning Waves Over an Arbitrary Bottom
,”
Int. J. Numer. Methods Fluids
,
35
(
7
), pp.
829
867
.
27.
Lumley
,
J. L.
, and
Poje
,
A.
,
1997
, “
Low-Dimensional Models for Flows With Density Fluctuations
,”
Phys. Fluids
,
9
(
7
), pp.
2023
2031
.
28.
Codina
,
R.
, and
Soto
,
O.
,
2004
, “
Approximation of the Incompressible Navier–Stokes Equations Using Orthogonal Subscale Stabilization and Pressure Segregation on Anisotropic Finite Element Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
15–16
), pp.
1403
1419
.
29.
Soto
,
O.
,
Löhner
,
R.
,
Cebral
,
J.
, and
Camelli
,
F.
,
2004
, “
A Stabilized Edge-Based Implicit Incompressible Flow Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
23-26
), pp.
2139
2154
.
30.
Enright
,
D.
,
Fedkiw
,
R.
,
Ferziger
,
J.
, and
Mitchell
,
I.
,
2002
, “
A Hybrid Particle Level Set Method for Improved Interface Capturing
,”
J. Comput. Phys.
,
183
(
1
), pp.
83
116
.
31.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1997
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
(
2
), pp.
141
112
.https://www.sciencedirect.com/science/article/pii/S002199919895906X
32.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
33.
Holmes
,
P. J.
,
Lumley
,
J. L.
,
Berkooz
,
G.
,
Mattingly
,
J. C.
, and
Wittenberg
,
R. W.
,
1997
, “
Low-Dimensional Models of Coherent Structures in Turbulence
,”
Phys. Rep.
,
287
(
4
), pp.
337
384
.
34.
Lumley
,
J.
, and
Blossey
,
P.
,
1998
, “
Control of Turbulence
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
311
327
.
35.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
, Cambridge, UK.
36.
Lumley
,
J. L.
,
2007
,
Stochastic Tools in Turbulence
,
Dover Publications
,
Mineola, NY
.
37.
Jolliffe
,
I. T.
,
2002
,
Principal Component Analysis
,
Springer
, New York.
38.
Antoulas
,
A. C.
,
2005
,
Approximation of Large-Scale Dynamical Systems
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
39.
Sirovich
,
L.
,
1989
, “
Chaotic Dynamics of Coherent Structures
,”
Phys. D: Nonlinear Phenom.
,
37
(
1–3
), pp.
126
145
.
40.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
1st ed.
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.