Harbors are important infrastructures for an offshore production chain. These harbors are protected from the actions of sea by breakwaters to ensure safe loading, unloading of vessels and also to protect the infrastructure. In current literature, research regarding the design of these structures is majorly based on physical model tests. In this study a new tool, a three-dimensional (3D) numerical model is introduced. The open-source computational fluid dynamics (CFD) model REEF3D is used to study the design of berm breakwaters. The model uses the Volume-averaged Reynolds-averaged Navier-Stokes (VRANS) equations to solve the porous flows. At first, the VRANS approach in REEF3D is validated for flow through porous media. A dam break case is simulated and comparisons are made for the free surface both inside and outside the porous medium. The numerical model REEF3D is applied to show how to extend the database obtained with purely numerical results, simulating different structural alternatives for the berm in a berm breakwater. Different simulations are conducted with varying berm geometry. The influence of the berm geometry on the pore pressure and velocities are studied. The resulting optimal berm geometry is compared to the geometry according to empirical formulations.

References

References
1.
van der Meer
,
J.
, and
Sigurdarson
,
S.
,
2011
, “
Front Slope Stability of the Icelandic-Type Berm Breakwater
,”
Coastal Structures 2011
, Yokohama, Japan, Sept. 6–8, pp. 435–446.
2.
CIRIA, CUR, and CETMEF
,
2007
,
The Rock Manual. The Use of Rock in Hydraulic Engineering
,
2nd ed.
, C683, CIRIA,
London, UK
.
3.
CECW-EH
,
2011
,
Coastal Engineering Manual, EM 1110-2-1100, Part V and VI
,
U.S. Army Corps of Engineers
,
Washington, DC
.
4.
Kamath
,
A.
,
Alagan Chella
,
M.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2016
, “
Breaking Wave Interaction With a Vertical Cylinder and the Effect of Breaker Location
,”
Ocean Eng.
,
128
, pp.
105
115
.
5.
Bihs
,
H.
, and
Kamath
,
A.
,
2016
, “
A Combined Level Set/Ghost Cell Immersed Boundary Representation for Floating Body Simulations
,”
Int. J. Numer. Methods Fluids
,
83
(
12
), pp.
905
916
.
6.
Grotle
,
E. L.
,
Bihs
,
H.
,
Pedersen
,
E.
, and
Æsøy
,
V.
,
2016
, “
CFD Simulations of Non-Linear Sloshing in a Rotating Rectangular Tank Using the Level Set Method
,”
ASME
Paper No. OMAE2016-54533.
7.
Liu
,
P.
,
Lin
,
P.
,
Chang
,
K.
, and
Sakakiyama
,
T.
,
1999
, “
Numerical Modeling of Wave Interaction With Porous Structures
,”
J. Waterw. Port Coast. Ocean Eng.
,
125
(
6
), pp.
322
330
.
8.
Chorin
,
A.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Computation
,
22
(
104
), pp.
745
762
.
9.
Center for Applied Scientific Computing
,
2006
, HYPRE High Performance Preconditioners—User's Manual,
Lawrence Livermore National Laboratory
,
Livermore, CA
.
10.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
11.
Jiang
,
G. S.
, and
Shu
,
C. W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
12.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous Flow Problems With Irregular Boundaries
,”
J. Comput. Phys.
,
227
(
9
), pp.
4354
4397
.
13.
Bihs
,
H.
,
Kamath
,
A.
,
Arntsen
,
Ø. A.
,
Chella
,
M.
, and
Aggarwal
,
A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
14.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2012
, “
A Wave Generation Toolbox for the Open-Source CFD Library: OpenFOAM
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.
15.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature- Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
16.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
410
438
.
17.
Jensen
,
B.
,
Jacobsen
,
N. G.
, and
Christensen
,
E. D.
,
2014
, “
Investigations on the Porous Media Equations and Resistance Coefficients for Coastal Structures
,”
Coastal Eng.
,
84
, pp.
56
72
.
18.
Howes
,
F.
, and
Whitaker
,
S.
,
1985
, “
The Spatial Averaging Theorem Revisited
,”
Chem. Eng. Sci.
,
40
(
8
), pp.
1387
1392
.
19.
van Gent
,
M.
,
1992
, “
Stationary and Oscillatory Flow Through Coarse Porous Media
,”
Communications on Hydraulic Geotechnical Engineering
, Vol.
93-9
,
Delft University of Technology
,
Delft, The Netherlands
, pp.
42
46
.
20.
van Gent
,
M.
,
1992
, “
Formulae to Describe Porous Flow
,”
Communications on Hydraulic Geotechnical Engineering
, Vol 92-2,
Delft University of Technology
,
Delft, The Netherlands
, pp.
42
46
.
21.
PIANC
,
2003
,
State-of-the-Art of Designing and Constructing Berm Breakwaters
,
WG40
, PIANC General Secretariat, Brussels, Belgium, pp. 54–61.
22.
van der Meer
,
J.
,
1998
, “
Rock Slopes and Gravel Beaches Under Wave Attack
,”
Ph.D. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid:67e5692c-0905-4ddd-8487-37fdda9af6b4?collection=research
23.
Troch
,
P.
,
2000
, “
Experimentele Studie En Numerieke Modellering Van Golfinteractie Met Stortsteengolfbrekers
,”
Ph.D. thesis
, Ghent University, Ghent, Belgium.https://repository.tudelft.nl/islandora/object/uuid:b90071fa-61f6-494d-8ccd-a139141dee17/?collection=research
24.
van der Meer
,
J.
, and
Sigurdarson
,
S.
,
2014
, “
Geometrical Design of Berm Breakwaters
,”
Coastal Eng. Proc.
,
1
(
34
), p.
25
.
25.
van der Meer
,
J.
, and
Sigurdarson
,
S.
,
2017
,
Design and Construction of Berm Breakwaters
, Vol. 40,
World Scientific Publishing
, Singapore.
You do not currently have access to this content.