The presence of dents on steel pipeline wall may constitute a threat for pipeline structural safety. Experimental testing results supported by numerical simulations are reported, in an attempt to assess the structural integrity of smoothly dented (nongauged) steel pipes. Ten experiments on 6 in diameter X52 steel pipes are reported, where dented steel pipes are subjected to bending and pressure loading, in order to estimate their residual strength and remaining fatigue life. Six specimens were subjected to cyclic bending loading, whereas four dented pipe specimens, following cyclic pressure loading, have been pressurized to burst to determine their ultimate pressure capacity. Numerical simulation of the testing procedure and, in particular, the loading pattern of each specimen (denting and cyclic loading) has also been performed so that local stress and strain distributions at the dented region are calculated accurately. Based on the finite element results, a simple and efficient fatigue assessment methodology is adopted, to estimate the remaining fatigue life and the predictions were found to compare with the experimental results. Finally, following a parametric numerical study, strain concentration factors (SNCFs) for dented pipes subjected to bending are calculated, to be used in fatigue life assessment.

References

References
1.
Doglione
,
R.
, and
Firrao
,
D.
,
1998
, “
Structural Collapse Calculations of Old Pipelines
,”
Int. J. Fatigue
,
20
(
2
), pp.
161
168
.
2.
Netto
,
T. A.
,
Ferraz
,
U. S.
, and
Estefen
,
S. F.
,
2005
, “
The Effect of Corrosion Defects on the Burst Pressure of Pipelines
,”
J. Constr. Steel Res.
,
61
(
8
), pp.
1185
1204
.
3.
Cosham
,
A.
, and
Hopkins
,
P.
,
2004
, “
The Effect of Dents in Pipelines—Guidance in the Pipeline Defect Assessment Manual
,”
Int. J. Pressure Vessels Piping
,
81
(
2
), pp.
127
139
.
4.
Ong
,
L. S.
,
1991
, “
Derivation of Stress Associated With a Long Axial Dent in a Pressurized Cylinder
,”
Int. J. Mech. Sci.
,
33
(
2
), pp.
115
123
.
5.
Ong
,
L. S.
,
Soh
,
A. K.
, and
On
,
J. L.
,
1992
, “
Experimental and Finite Element Investigation of a Local Dent on a Pressurized Pipe
,”
J. Strain Anal.
,
27
(
3
), pp.
177
185
.
6.
Fowler
,
J. R.
,
1993
, “
Criteria for Dent Acceptability in Offshore Pipelines
,”
Offshore Technology Conference (OTC 7311)
, Houston, TX, May 3–6, pp.
481
493
.
7.
Buitrago
,
J.
, and
Hsu
,
T. M.
,
1996
, “
Stress Concentration Factors for Dented Tubular Members
,”
Offshore Mechanics and Artic Engineering Conference (OMAE)
, Florence, Italy, June 16–20, pp.
291
296
.
8.
Macdonald
,
K. A.
, and
Cosham
,
A.
,
2005
, “
Best Practice for the Assessment of Defects in Pipelines—Gouges and Dents
,”
Eng. Failure Anal.
,
12
(
5
), pp.
720
745
.
9.
Das
,
S.
,
Cheng
,
J. J. R.
, and
Murray
,
D. W.
,
2007
, “
Prediction of the Fracture Life of a Wrinkled Steel Pipe Subject to Low Cycle Fatigue Load
,”
Can. J. Civ. Eng.
,
34
(
9
), pp.
1131
1139
.
10.
Dama
,
E.
,
Karamanos
,
S. A.
, and
Gresnigt
,
A. M.
,
2007
, “
Failure of Locally Buckled Pipelines
,”
ASME J. Pressure Vessel Technol.
,
129
(
2
), pp.
272
279
.
11.
API
,
2007
, “Fitness-for-Service,”
American Petroleum Institute
,
Washington, DC
, No. API 579/ASME FFS-1.
12.
CSA
,
2007
, “Oil and Gas Pipeline Systems,”
Canadian Standard Association
,
Mississauga, ON, Canada
, No. CSA-Z662.
13.
ASME
,
2007
, “Gas Transmission and Distribution Piping Systems,”
American Society of Mechanical Engineers
,
New York
, ASME Standard No. B31.8.
14.
Pinheiro
,
B.
,
Lesage
,
J.
,
Pasqualino
,
I.
,
Benseddiq
,
N.
, and
Bemporad
,
E.
,
2015
, “
Toward a Fatigue Life Assessment of Steel Pipes Based on X-Ray Diffraction Measurements
,”
ASME
Paper No. OMAE2015-42277.
15.
Pournara
,
A. E.
, and
Karamanos
,
S. A.
,
2012
, “
Structural Integrity of Steel Hydrocarbon Pipelines With Local Wall Distortions
,”
ASME
Paper No. PVP2012-78131.
16.
ASTM
,
2012
, “
Standard Test Method for Strain-Controlled Fatigue Testing
,” American Society for Testing and Materials, West Conshohocken, PA, ASTM No. E606/E606M-12.
17.
Fernandes
,
A. A.
,
de Jesus
,
A. A.
,
Jorge
,
R. N.
,
Coppola
,
T.
,
Demofonti
,
G.
,
Thibaux
,
P.
,
Van Wittenberghe
,
J.
,
Van Poucke
,
M.
,
Martinez
,
X.
,
Barbu
,
L.
,
Oller
,
S.
,
Barbat
,
A.
,
Karamanos
,
S. A.
,
Pournara
,
A.
,
Chatzopoulou
,
G.
,
Varelis
,
G. E.
,
Salvatore
,
W.
,
Banushi
,
G.
,
Morelli
,
F.
,
Erdelen-Peppler
,
M.
, and
Knauf
,
G.
,
2013
, “
Ultra Low Cycle Fatigue of Steel Under High-Strain Loading Conditions
,” RFCS Program, Brussels, Belgium, Contract No. RFSR-CT-2011-00034, Final Report of ULCF Project, accessed July 25, 2018, http://publications.europa.eu
18.
Vasilikis
,
D.
,
Karamanos
,
S. A.
,
Van Es
,
S. H. J.
, and
Gresnigt
,
A. M.
,
2016
, “
Ultimate Bending Capacity of Spiral-Welded Steel Tubes—Part II: Predictions
,”
Thin-Walled Struct.
,
102
, pp.
305
319
.
19.
Dowling
,
N. E.
, 2013,
Mechanical Behavior of Materials
,
4th ed.
,
Pearson
, Essex, UK.
You do not currently have access to this content.