In this paper, numerical simulations of nonlinear sloshing in rectangular tanks are presented. Model implementations in the open source software reef3d are tested, and the results are compared with experimental data from three different conditions. The interface location is compared for both linear and nonlinear sloshing. The nonlinear sloshing is simulated in both two-dimensional (2D) and three-dimensional (3D). Video images from the SPHERIC project are compared with simulations for the interface. A condition with lateral wave impacts in sloshing, with a frequency close to the natural frequency of the first mode, can be found in this case. The numerical model is solving the Reynolds-averaged Navier–Stokes (RANS) equations with the kω turbulence model. The level set method is used to capture the interface. Higher order discretization schemes are implemented to handle time-evolution and convective fluxes. A ghost cell method is used to account for solid boundaries and parallel computations. It is found that the limiting factor for the eddy-viscosity has significant influence in the nonlinear sloshing cases. As the sloshing becomes more violent, the increased strain at the gas–liquid interface overproduces turbulence energy with unrealistically high damping of the motion. Three-dimensional simulations show slightly better comparison than 2D. Due to nonlinearities and small damping, the time to reach steady-state may take several cycles. The last case shows promising results for the global motion. As expected, the breakup of the liquid surface makes it difficult to resolve each phase. But overall, the numerical model predicts the sloshing motion reasonably well.

References

References
1.
Satoru
,
K.
,
Hiromasa
,
U.
,
Fumimaru
,
O.
, and
Tokuro
,
M.
,
1982
, “
Turbulence Structure and Transport Mechanism at the Free Surface in an Open Channel Flow
,”
Int. J. Heat Mass Transfer
,
25
(
4
), pp.
513
521
.
2.
Faltinsen
,
O. M.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
Cambridge University Press
,
Cambridge, UK
.
3.
La Rocca
,
M.
,
Sciortino
,
G.
, and
Boniforti
,
M. A.
,
2000
, “
A Fully Nonlinear Model for Sloshing in a Rotating Container
,”
Fluid Dyn. Res.
,
27
(
1
), pp.
23
52
.
4.
Chella
,
M. A.
,
Bihs
,
H.
,
Myrhaug
,
D.
, and
Muskulus
,
M.
,
2015
, “
Breaking Characteristics and Geometric Properties of Spilling Breakers Over Slopes
,”
Coastal Eng.
,
95
, pp.
4
19
.
5.
Kamath
,
A.
,
Bihs
,
H.
, and
Arntsen
,
Ø. A.
,
2015
, “
Numerical Modeling of Power Take-Off Damping in an Oscillating Water Column Device
,”
Int. J. Mar. Energy
,
10
, pp.
1
16
.
6.
Afzal
,
M. S.
,
Bihs
,
H.
,
Kamath
,
A.
, and
Arntsen
,
Ø. A.
,
2015
, “
Three-Dimensional Numerical Modeling of Pier Scour Under Current and Waves Using Level-Set Method
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
3
), p.
032001
.
7.
Wilcox
,
D.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
8.
Rodi
,
W.
,
1993
,
Turbulence Models and Their Application in Hydraulics
,
CRC Press
,
New York
.
9.
Naot
,
D.
, and
Rodi
,
W.
,
1982
, “
Calculation of Secondary Currents in Channel Flow
,”
J. Hydraul. Div.
,
108
(
8
), pp.
948
968
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0034501
10.
Durbin
,
P. A.
,
2009
, “
Limiters and Wall Treatments in Applied Turbulence Modeling
,”
Fluid Dyn. Res.
,
41
(
1
), p.
012203
.
11.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
12.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
13.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill Book Company
,
New York
.
14.
Bihs
,
H.
,
Kamath
,
A.
,
Alagan Chella
,
M.
,
Aggarwal
,
A.
, and
Arntsen
,
Ø. A.
,
2016
, “
A New Level Set Numerical Wave Tank With Improved Density Interpolation for Complex Wave Hydrodynamics
,”
Comput. Fluids
,
140
, pp.
191
208
.
15.
Hossain
,
M.
, and
Rodi
,
W.
,
1980
, “
Mathematical Modelling of Vertical Mixing in Stratified Channel Flow
,”
Second Symposium on Stratified Flows
, Trondheim, Norway, June 24–27, pp.
280
290.
16.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.
17.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
18.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
410
438
.
19.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.
20.
Van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.
21.
Jiang
,
G.
, and
Shu
,
C.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.
22.
Osher
,
S.
, and
Fedkiw
,
R.
,
2006
,
Level Set Methods and Dynamic Implicit Surfaces
, Vol.
153
,
Springer
,
New York
.
23.
Harten
,
A.
,
1983
, “
High Resolution Schemes for Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
49
(
3
), pp.
357
393
.
24.
Berthelsen
,
P. A.
, and
Faltinsen
,
O. M.
,
2008
, “
A Local Directional Ghost Cell Approach for Incompressible Viscous Flow Problems With Irregular Boundaries
,”
J. Comput. Phys.
,
227
(
9
), pp.
4354
4397
.
25.
Botia-Vera
,
E.
,
Souto
,
I.
,
Bulian
,
A.
, and
Lobovsky`
,
G. L.
,
2010
,
Three SPH Novel Benchmark Test Cases for Free Surface Flows
,
University of Manchester
,
Manchester, UK
.
You do not currently have access to this content.