This study illustrates a comparison of two numerical methods under a unified computational platform for solving fluid–structure interaction (FSI) problems. The first is an arbitrary Lagrangian–Eulerian (ALE)-based fluid model coupled to a structural finite element (FE) method (ALE-FE/FE), and the second is a smoothed particle hydrodynamics (SPH) method coupled to the same structural FE code (SPH/FE). The predictive capabilities and computational efficiency of both the numerical methods are evaluated and validated against a canonical problem of a rapidly varying flow past an elastic gate for which experimental data are available. In both numerical solutions, the fluid flow is governed by the Navier–Stokes equation, and the elastic gate is modeled as a flexible structure. Numerical simulation results show that the ALE-FE/FE continuum approach not only captures the dynamic behavior properly but also predicts the water-free surface profiles and the elastic gate deformations accurately. On the other hand, the coupled purely Lagrangian approach of the SPH/FE under an identical computational platform is found to be less accurate and efficient in predicting the dynamics of the elastic gate motion and the water-free surface profiles.

References

References
1.
Hughes
,
T.
,
Liu
,
W.
, and
Zimmerman
,
T.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Math.
,
29
(3), pp.
329
349
.
2.
Rugonyi
,
S.
, and
Bathe
,
K. J.
,
2001
, “
On Finite Element Analysis of Fluid Flows Fully Coupled With Structural Interactions
,”
Comput. Model. Eng. Sci.
,
2
(2), pp.
195
212
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.1964&rep=rep1&type=pdf
3.
Bathe
,
K. J.
, and
Zhang
,
H.
,
2004
, “
Finite Element Developments for General Fluid Flows With Structural Interactions
,”
Int. J. Numer. Methods Eng.
,
60
(1), pp.
213
232
.
4.
Lee
,
S.
,
Cho
,
J.
,
Part
,
T.
, and
Lee
,
W.
,
2002
, “
Baffled Fuel-Storage Container: Parametric Study on Transient Dynamic Characteristics
,”
Struct. Eng. Mech.
,
13
(
6
), pp.
653
670
.
5.
Zhong
,
Z.
,
1993
,
Finite Element Procedures for Contact-Impact Problems
,
Oxford University Press
,
Oxford, UK
.
6.
Donea
,
J.
,
Huerta
,
A.
,
Ponhot
,
J. P.
, and
Rodriguez-Ferran
,
A.
,
2004
, “
Arbitrary Lagrangian-Eulerian Methods
,”
Encyclopedia of Computational Mechanics
,
Wiley
,
New York
.
7.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
R. Astron. Soc.
,
181
(3), pp.
375
389
.
8.
Lucy
,
L. B.
,
1997
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.
9.
Randles
,
P. W.
, and
Libersky
,
L. D.
,
1996
, “
Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(1–4), pp.
375
408
.
10.
Monaghan
,
J. J.
, and
Kos
,
A.
,
1999
, “
Solitary Waves on a Cretan Beach
,”
J. Waterw. Port Coastal Ocean Eng.
,
125
(
3
), pp.
145
154
.
11.
Colagrossi
,
A.
, and
Landrini
,
M.
,
2003
, “
Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
191
(2), pp.
448
475
.
12.
Souto-Iglesias
,
A.
,
Idelsohn
,
S.
,
Marti
,
J.
,
Zamora-Rodriguez
,
R.
, and
Onate
,
E.
,
2008
, “
Modeling of Free Surface Flows With Elastic Bodies Interactions
,”
27th Symposium on Naval Hydrodynamics
, Seoul, Korea Oct. 5–10.http://oa.upm.es/3462/3/INVE_MEM_2008_54974.pdf
13.
Delorme
,
L.
,
Colagrossi
,
A.
,
Souto-Iglesias
,
A.
,
Zamora Rodriguez
,
R.
, and
Botia-Vera
,
E.
,
2009
, “
A Set of Canonical Problems in Sloshing—Part I: Pressure Field in Forced Roll–Comparison Between Experimental Results and SPH
,”
Ocean Eng.
,
36
(2), pp.
168
178
.
14.
Antoci
,
C.
,
Gallati
,
M.
, and
Sibilla
,
S.
,
2007
, “
Numerical Simulation of Fluid-Structure Interaction by SPH
,”
J. Comput. Struct.
,
85
(11–14), pp.
879
890
.
15.
Souli
,
M.
, and
Benson
,
D. J.
,
2010
,
Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction Numerical Simulation
,
Wiley
,
New York
.
16.
van Leer
,
B.
,
1977
, “
Towards the Ultimate Conservative Difference Scheme—IV: A New Approach to Numerical Convection
,”
J. Comput. Phys.
,
23
(7), pp.
276
299
.
17.
Souli
,
M.
, and
Zholesio
,
J.
,
2001
, “
Arbitrary Lagrangian-Eulerian and Free Surface Methods in Fluid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
191
(3–5), pp.
451
466
.
18.
Woodward
,
P.
, and
Collela
,
P.
,
1982
, “
The Numerical Simulation of Two-Dimensional Fluid Flow With Strong Shocks
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-86952.
19.
Monaghan
,
J. J.
, and
Gingold
,
R. A.
,
1983
, “
Shock Simulation by the Particle Method SPH
,”
J. Comput. Phys.
,
52
(2), pp.
374
389
.
20.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
, pp.
543
574
.
21.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(2), pp.
399
406
.
22.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Mesh-Free Particle Method
,
World Scientific
,
Singapore
.
23.
Hallquist
,
J. O.
,
2006
,
LS-DYNA Theoretical Manual
, Livermore Software Technology Corporation, Livermore,
CA
.
24.
Schwer
,
L.
,
2009
, “
Aluminum Plate Perforation: A Comparative Case Study Using Lagrange With Erosion, Multi-Material ALE, and Smooth Particle Hydrodynamics
,”
Seventh European LS-DYNA Conference
, Stuttgart, Germany, June 10.https://www.dynalook.com/european-conf-2009/J-I-01.pdf
25.
Belytschko
,
T.
,
Flanagran
,
D. F.
, and
Kennedy
,
J. M.
,
1982
, “
Finite Element Methods With User-Controlled Meshes for Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
33
(1–3), pp.
689
723
.https://www.sciencedirect.com/science/article/pii/004578258290127X
26.
Dalrymple
,
R. A.
, and
Rogers
,
B. D.
,
2006
, “
Numerical Modeling of Water Waves With the SPH Method
,”
Coastal Eng. J.
,
53
(
2
), pp.
141
147
.
27.
Belytschko
,
T.
,
Krogauz
,
Y.
,
Dolbow
,
J.
, and
Gerlach
,
J.
,
1998
, “
On the Completeness of Mesh-free Particle Methods
,”
Int. J. Numer. Methods Eng.
,
43
(
5
), pp.
785
819
.
28.
Dilts
,
G.
,
1999
, “
Moving-Least-Squares-Particle Hydrodynamics—I: Consistency and Stability
,”
Int. J. Numer. Methods Eng.
,
44
(
8
), pp.
1115
1155
.
29.
Selhammar
,
M.
,
1997
, “
Modified Artificial Viscosity in Smooth Particle Hydrodynamics
,”
J. Astron. Astrophys.
,
325
, pp.
857
865
.http://aa.springer.de/bibs/7325002/2300857/small.htm
30.
Challa
,
R.
,
Yim
,
S. C.
,
Idichandy
,
V. G.
, and
Vendhan
,
C. P.
,
2014
, “
Rigid-Object Water-Entry Impact Dynamics: Finite-Element/Smoothed Particle Hydrodynamics Modeling and Experimental Calibration
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031102
.
31.
Challa
,
R.
,
Yim
,
S. C.
,
Idichandy
,
V. G.
, and
Vendhan
,
C. P.
,
2013
, “
Rigid-Object Water-Surface Impact Dynamics: Experiment and Semi-Analytical Approximation
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
1
), p.
011102
.
You do not currently have access to this content.