The nonlinear coupling effect between degree-of-freedom (DOFs) and the influence of vortex-induced loads on the motion of SPAR-type floating offshore wind turbine (FOWT) are studied based on an aero-hydro-vortex-mooring coupled model. Both the first- and second-order wave loads are calculated based on the three-dimensional (3D) potential theory. The aerodynamic loads on the rotor are acquired with the blade element momentum (BEM) theory. The vortex-induced loads are simulated with computational fluid dynamics (CFD) approach. The mooring forces are solved by the catenary theory and the nonlinear stiffness provided by the SPAR buoy is also considered. The coupled model is set up and a numerical code is developed for calculating the dynamic response of a Hywind SPAR-type FOWT under the combined sea states of wind, wave, and current. It shows that the amplitudes of sway and roll are dominated by lift loads induced by vortex shedding, and the oscillations in roll reach the same level of pitch in some scenarios. The mean value of surge is changed under the drag loads, but the mean position in pitch, as well as the oscillations in surge and pitch, is little affected by the current. Due to the coupling effects, the heave motion is also influenced by vortex-induced forces. When vortex-shedding frequency is close to the natural frequency in roll, the motions are increased. Due to nonlinear stiffness, super-harmonic response occurs in heave, which may lead to internal resonance.

References

References
1.
Weinzettel
,
J.
,
Reenaas
,
M.
,
Solli
,
C.
, and
Hertwich
,
E. G.
,
2009
, “
Life Cycle Assessment of a Floating Offshore Wind Turbine
,”
Renewable Energy
,
34
(
3
), pp.
742
747
.
2.
Sun
,
X.
,
Huang
,
D.
, and
Wu
,
G.
,
2012
, “
The Current State of Offshore Wind Energy Technology Development
,”
Energy
,
41
(
1
), pp.
298
312
.
3.
Chan
,
G. K. Y.
,
Sclavounos
,
P. D.
,
Jonkman
,
J.
, and
Hayman
,
G.
,
2015
, “
Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory
,”
ASME
Paper No. OMAE2015-41053.
4.
Jeon
,
M.
,
Lee
,
S.
, and
Lee
,
S.
,
2014
, “
Unsteady Aerodynamics of Offshore Floating Wind Turbines in Platform Pitching Motion Using Vortex Lattice Method
,”
Renewable Energy
,
65
, pp.
207
212
.
5.
Hsu
,
W. T.
,
Thiagarajan
,
K. P.
, and
Manuel
,
L.
,
2017
, “
Extreme Mooring Tensions Due to Snap Loads on a Floating Offshore Wind Turbine System
,”
Mar. Struct.
,
55
, pp.
182
199
.
6.
Lopez-Pavon
,
C.
,
Watai
,
R. A.
,
Ruggeri
,
F.
,
Simos
,
A. N.
, and
Souto-Iglesias
,
A.
,
2015
, “
Influence of Wave Induced Second-Order Forces in Semisubmersible FOWT Mooring Design
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
3
), p.
031602
.
7.
Robertson
,
A. N.
, and
Jonkman
,
J. M.
,
2011
, “
Loads Analysis of Several Offshore Floating Wind Turbine Concepts
,”
Twenty-First International Offshore and Polar Engineering Conference
(ISOPE), Maui, HI, June 19–24, Paper No.
ISOPE-I-11-204
https://www.onepetro.org/conference-paper/ISOPE-I-11-204.
8.
Low
,
Y. M.
, and
Srinil
,
N.
,
2016
, “
VIV Fatigue Reliability Analysis of Marine Risers With Uncertainties in the Wake Oscillator Model
,”
Eng. Struct.
,
106
, pp.
96
108
.
9.
Mukundan
,
H.
,
Modarres-Sadeghi
,
Y.
,
Dahl
,
J. M.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2009
, “
Monitoring VIV Fatigue Damage on Marine Risers
,”
J. Fluid. Struct.
,
25
(
4
), pp.
617
628
.
10.
Ulveseter
,
J. V.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2017
, “
Time Domain Model for Calculation of Pure In-Line Vortex-Induced Vibrations
,”
J. Fluid. Struct.
,
68
, pp.
158
173
.
11.
Ma
,
P.
,
Qiu
,
W.
, and
Spencer
,
D.
,
2014
, “
Numerical Vortex-Induced Vibration Prediction of Marine Risers in Time-Domain Based on a Forcing Algorithm
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031703
.
12.
Ulveseter
,
J. V.
,
Sævik
,
S.
, and
Larsen
,
C. M.
,
2016
, “
Vortex Induced Vibrations of Pipelines With Non-Linear Seabed Contact Properties
,”
ASME
Paper No. OMAE2016-54424.
13.
Benitz
,
M. A.
,
Schmidt
,
D. P.
,
Lackner
,
M. A.
,
Stewart
,
G. M.
,
Jonkman
,
J.
, and
Robertson
,
A.
,
2015
, “
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible
,”
34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE)
, St. John's, NF, Canada, May 31–June 5, pp.
1
12
.
14.
Kokubun
,
K.
,
Ishida
,
S.
,
Nimura
,
T.
,
Chujo
,
T.
,
Yoshida
,
S.
, and
Utsunomiya
,
T.
,
2012
, “
Model Experiment of a SPAR Type Offshore Wind Turbine in Storm Condition
,”
ASME
Paper No. OMAE2012-83993.
15.
Duan
,
F.
,
Hu
,
Z.
, and
Wang
,
J.
,
2016
, “
Investigation of the VIMs of a SPAR-Type FOWT Using a Model Test Method
,”
J. Renewable Sustainable Energy
,
8
(
6
), p.
063301
.
16.
Li
,
Z.
,
Yao
,
W.
,
Yang
,
K.
,
Jaiman
,
R. K.
, and
Khoo
,
B. C.
,
2016
, “
On the Vortex-Induced Oscillations of a Freely Vibrating Cylinder in the Vicinity of a Stationary Plane Wall
,”
J. Fluid. Struct.
,
65
, pp.
495
526
.
17.
Mittal
,
S.
,
2013
, “
Free Vibrations of a Cylinder: 3-D Computations at Re= 1000
,”
J. Fluid. Struct.
,
41
, pp.
109
118
.
18.
Bourguet
,
R.
,
Karniadakis
,
G. E.
, and
Triantafyllou
,
M. S.
,
2013
, “
Multi-Frequency Vortex-Induced Vibrations of a Long Tensioned Beam in Linear and Exponential Shear Flows
,”
J. Fluid. Struct.
,
41
, pp.
33
42
.
19.
Wang
,
E.
,
Xiao
,
Q.
, and
Incecik
,
A.
,
2015
, “
CFD Simulation of Vortex-Induced Vibration of a Vertical Riser
,”
Nineth International Workshop on Ship and Marine Hydrodynamics
, Glasgow, UK, Aug. 25–28, pp.
1
6
.https://strathprints.strath.ac.uk/60894/
20.
Wang
,
E.
,
Xiao
,
Q.
, and
Incecik
,
A.
,
2017
, “
Three-Dimensional Numerical Simulation of Two-Degree-of-Freedom VIV of a Circular Cylinder With Varying Natural Frequency Ratios at Re = 500
,”
J. Fluid. Struct.
,
73
, pp.
162
182
.
21.
Wang
,
E.
,
Xiao
,
Q.
,
Zhu
,
Q.
, and
Incecik
,
A.
,
2017
, “
The Effect of Spacing on the Vortex-Induced Vibrations of Two Tandem Flexible Cylinders
,”
Phys. Fluids
,
29
(
7
), p.
077103
.
22.
Hirabayashi
,
S.
,
2016
, “
Numerical Analysis of Vortex-Induced Motion of Two-Dimensional Circular Cylinder by Lattice Boltzmann Method
,”
J. Mar. Sci. Technol.
,
21
(
3
), pp.
426
433
.
23.
Wu
,
C. H.
,
Ma
,
S.
,
Kang
,
C. W.
,
Lim
,
T. B. A.
,
Jaiman
,
R. K.
,
Weymouth
,
G.
, and
Tutty
,
O.
,
2016
, “
Vortex-Induced Motion of a Square Cylinder at Moderate Reynolds Numbers
,”
ASME
Paper No. OMAE2016-54190.
24.
Hashiura
,
M.
,
Hirabayashi
,
S.
, and
Suzuki
,
H.
,
2016
, “
Experimental Study of Shape Effect of Floating Body for Vortex-Induced Motion
,”
Techno-Ocean
(
Techno-Ocean
), Kobe, Japan, Oct. 6–8, pp.
74
79
.
25.
Liu
,
M.
,
Xiao
,
L.
,
Liang
,
Y.
, and
Tao
,
L.
,
2017
, “
Experimental and Numerical Studies of the Pontoon Effect on Vortex-Induced Motions of Deep-Draft Semi-Submersibles
,”
J. Fluid. Struct.
,
72
, pp.
59
79
.
26.
Liang
,
Y.
,
Tao
,
L.
,
Xiao
,
L.
, and
Liu
,
M.
,
2017
, “
Experimental and Numerical Study on Vortex-Induced Motions of a Deep-Draft Semi-Submersible
,”
Appl. Ocean Res.
,
67
, pp.
169
187
.
27.
Liu
,
S. X.
,
2016
, “
Study on the Nonlinear Coupled Motion of a SPAR Under Stochastic Wave and Vortex
,” M.E. dissertation, Tianjin University, Tianjin, China.
28.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
29.
Jonkman
,
J.
,
2010
, “
Definition of the Floating System for Phase IV of OC3
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-47535
.https://www.nrel.gov/docs/fy10osti/47535.pdf
30.
Journée
,
J. M. J.
,
Massie
,
W. W.
, and
Huijsmans
,
R. H. M.
,
2000
,
Offshore Hydromechanics
,
TU Delft, Delft
,
The Netherlands
, Chap. 8.
31.
Li
,
J.
,
Tang
,
Y.
, and
Yeung
,
R. W.
,
2014
, “
Effects of Second-Order Difference-Frequency Wave Forces on a New Floating Platform for an Offshore Wind Turbine
,”
J. Renewable Sustainable Energy
,
6
(
3
), p.
033102
.
32.
Li
,
J.
,
Jiang
,
Y.
,
Tang
,
Y.
,
Qu
,
X.
, and
Zhai
,
J.
,
2017
, “
Effects of Second-Order Difference-Frequency Wave Forces on Floating Wind Turbine Under Survival Condition
,”
Trans. Tianjin Univ.
,
23
(
2
), pp.
130
137
.
33.
Faltinsen
,
O. M.
,
1993
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
New York
, Chap. 6.
34.
Min
,
H.
,
Peng
,
C.
,
Duan
,
F.
,
Hu
,
Z.
, and
Zhang
,
J.
,
2016
, “
Numerical Simulation of Dynamics of a SPAR Type Floating Wind Turbine and Comparison With Laboratory Measurements
,”
ASME
Paper No. OMAE2016-54149.
35.
Melis
,
C.
,
Caille
,
F.
,
Perdrizet
,
T.
,
Poirette
,
Y.
, and
Bozonnet
,
P.
,
2016
, “
A Novel Tension-Leg Application for Floating Offshore Wind: Targeting Lower Nacelle Motions
,”
ASME
Paper No. OMAE2016-54961.
36.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
, “
AeroDyn Theory Manual
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-36881
.https://www.nrel.gov/docs/fy05osti/36881.pdf
37.
Tang
,
Y.
,
Li
,
Y.
,
Liu
,
L.
,
Jin
,
W.
, and
Qu
,
X.
,
2017
, “
Study on Influence of Vortex Induced Loads on the Motion of SPAR-Type Wind Turbine Based on Aero-Hydro-Vortex-Mooring Coupled Model
,”
ASME
Paper No. OMAE2017-62620.
38.
Li
,
W.
,
Tang
,
Y. G.
,
Liu
,
L. Q.
,
Li
,
Y.
, and
Wang
,
B.
,
2017
, “
Internal Resonances for Heave, Roll and Pitch Modes of a SPAR Platform Considering Wave and Vortex-Induced Loads in the Main Roll Resonance
,”
China Ocean Eng.
,
31
(
4
), pp.
408
417
.
39.
Li
,
W.
,
Tang
,
Y.
,
Liu
,
L.
,
Liu
,
S.
, and
Cai
,
R.
,
2017
, “
Heave-Roll-Pitch Coupled Nonlinear Internal Resonance Response of a SPAR Platform Considering Wave and Vortex Exciting Loads
,”
J. Ocean Univ. China
,
16
(
2
), pp.
209
222
.
40.
Wang
,
Y.
,
Yang
,
J.
, and
Li
,
X.
,
2008
, “
CFD Analysis of Unsteady Flows Around a New Cell-Truss Spar and the Corresponding Vortex-Induced Motions
,”
ASME
Paper No. OMAE2008-57191.
41.
Zhao
,
M.
,
Cheng
,
L.
,
An
,
H.
, and
Lu
,
L.
,
2014
, “
Three-Dimensional Numerical Simulation of Vortex-Induced Vibration of an Elastically Mounted Rigid Circular Cylinder in Steady Current
,”
J. Fluid. Struct.
,
50
, pp.
292
311
.
42.
Vandiver
,
J. K.
,
1998
, “
Research Challenges in the Vortex-Induced Vibration Prediction of Marine Risers
,”
Offshore Technology Conference (OTC)
, Houston, TX, May 4–7, Paper No.
OTC-8698-MS
.
43.
Wang
,
Y.
,
2010
, “
Research on the Key Characteristics of SPAR Vortex-Induced Motions
,”
Ph.D. dissertation
, Shanghai Jiao Tong University, Shanghai, China.https://www.dissertationtopic.net/doc/1541715
44.
Fan
,
J. J.
,
2011
, “
Numerical Simulation of Fluid-Structural Interaction for Vortex-Induced Vibration of Deep-Sea Top Tension Risers
,” M.E. dissertation, Tianjin University, Tianjin China.
45.
Hover
,
F. S.
,
Techet
,
A. H.
, and
Triantafyllou
,
M. S.
,
1998
, “
Forces on Oscillating Uniform and Tapered Cylinders in Cross Flow
,”
J. Fluid Mech.
,
363
, pp.
97
114
.
46.
Lucor
,
D.
, and
Triantafyllou
,
M. S.
,
2008
, “
Parametric Study of a Two Degree-of-Freedom Cylinder Subject to Vortex-Induced Vibrations
,”
J. Fluid. Struct.
,
24
(
8
), pp.
1284
1293
.
47.
Zhao
,
J.
,
Tang
,
Y.
, and
Shen
,
W.
,
2010
, “
A Study on the Combination Resonance Response of a Classic Spar Platform
,”
J. Vib. Control
,
16
(
14
), pp.
2083
2107
.
48.
Salehyar
,
S.
,
Li
,
Y.
, and
Zhu
,
Q.
,
2017
, “
Fully-Coupled Time-Domain Simulations of the Response of a Floating Wind Turbine to Non-Periodic Disturbances
,”
Renewable Energy
,
111
, pp.
214
226
.
49.
Salehyar
,
S.
, and
Zhu
,
Q.
,
2015
, “
Aerodynamic Dissipation Effects on the Rotating Blades of Floating Wind Turbines
,”
Renewable Energy
,
78
, pp.
119
127
.
50.
Gu
,
J. Y.
,
Zhu
,
X. Y.
,
Yang
,
J. M.
,
Lu
,
Y. X.
, and
Xiao
,
L. F.
,
2015
, “
Numerical Study on the 3D Complex Characteristics of Flow around the Hull Structure of TLP
,”
China Ocean Eng.
,
29
(
4
), pp.
535
550
.
You do not currently have access to this content.