A three-dimensional (3D) finite element analysis (FEA) model of top-tensioned riser (TTR) with hydropneumatic tensioner is proposed in this work. First, the tension calculation equation of the hydropneumatic system is derived, and the kinematic relationship of the platform–tensioner–riser system is established. Second, a 3D FEA model is established based on the FEA code ABAQUS, considering the actual riser string configuration and the Christmas tree. At last, four kinds of tensioner models, i.e., a constant vertical tension model, a conventional simplified model, a linear spring–damper model, and a nonlinear spring–damper model, are compared and analyzed in this study. Results show that the constant vertical tension model is not recommended as it cannot reflect the actual tension in the tensioner and the response of the TTR. The conventional simplified model indeed overestimates the tension of tensioner and may lead to inaccurate estimation results of the TTR response. The linear model is applicable when the environmental condition is relatively mild, but it is strongly recommended to use the nonlinear model especially in harsher environmental conditions.

References

References
1.
Li
,
X.
,
Guo
,
H.
, and
Meng
,
F.
,
2010
, “
Stress Analysis of Top Tensioned Riser Under Random Waves and Vessel Motions
,”
J. Ocean Univ. China
,
9
(
3
), pp.
251
256
.
2.
Chang
,
Y. J.
,
Chen
,
G. M.
,
Sun
,
Y. Y.
,
Xu
,
L. B.
, and
Peng
,
P.
,
2008
, “
Nonlinear Dynamic Analysis of Deepwater Drilling Risers Subjected to Random Loads
,”
China Ocean Eng.
,
22
(
4
), pp.
683
691
.
3.
Takafuji
,
M.
, and
de Arruda Martins
,
C.
,
2012
, “
Comparison Between Frequency Domain and Time Domain Riser Analysis
,”
ASME J. Offshore Mech. Arct.
,
134
(
4
), p.
041301
.
4.
Mao
,
L.
,
Liu
,
Q.
,
Zhou
,
S.
,
Wang
,
G.
, and
Fu
,
Q.
,
2016
, “
Deep Water Drilling Riser Mechanical Behavior Analysis Considering Actual Riser String Configuration
,”
J. Nat. Gas Sci. Eng.
,
33
, pp.
240
254
.
5.
Kuiper
,
G. L.
,
Brugmans
,
J.
, and
Metrikine
,
A. V.
,
2008
, “
Destabilization of Deep-Water Risers by a Heaving Platform
,”
J. Sound Vib.
,
310
(
3
), pp.
541
557
.
6.
Yang
,
H.
,
Xiao
,
F.
, and
Xu
,
P.
,
2013
, “
Parametric Instability Prediction in a Top-Tensioned Riser in Irregular Waves
,”
Ocean. Eng.
,
70
, pp.
39
50
.
7.
Yang
,
H.
, and
Xiao
,
F.
,
2014
, “
Instability Analyses of a Top-Tensioned Riser Under Combined Vortex and Multi-Frequency Parametric Excitations
,”
Ocean. Eng.
,
81
, pp.
12
28
.
8.
Wang
,
Y.
,
Gao
,
D.
, and
Fang
,
J.
,
2015
, “
Coupled Dynamic Analysis of Deepwater Drilling Riser Under Combined Forcing and Parametric Excitation
,”
J. Nat. Gas Sci. Eng.
,
27
(Pt. 3), pp.
1739
1747
.
9.
Shi
,
C.
,
Manuel
,
L.
,
Tognarelli
,
M. A.
, and
Botros
,
T.
,
2012
, “
On the Vortex-Induced Vibration Response of a Model Riser and Location of Sensors for Fatigue Damage Prediction
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
3
), p.
031802
.
10.
Ma
,
P.
,
Qiu
,
W.
, and
Spencer
,
D.
,
2014
, “
Numerical Vortex-Induced Vibration Prediction of Marine Risers in Time-Domain Based on a Forcing Algorithm
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031703
.
11.
Chen
,
W.
,
Li
,
M.
,
Zhang
,
L.
, and
Tan
,
T.
,
2016
, “
Study on Multimode Vortex-Induced Vibration of Deepwater Riser in Different Flow Fields by Finite Element Simulations
,”
ASME J. Offshore Mech. Arct. Eng.
,
138
(
1
), p.
011801
.
12.
Wang
,
J.
,
Fu
,
S.
,
Wang
,
J.
,
Li
,
H.
, and
Ong
,
M. C.
,
2017
, “
Experimental Investigation on Vortex-Induced Vibration of a Free-Hanging Riser Under Vessel Motion and Uniform Current
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
4
), p.
041703
.
13.
Wang
,
T.
,
Zhang
,
X.
, and
Zhu
,
W.
,
2010
, “
Vessel Motion Effects on Nonlinear Dynamics of Deepwater Drilling Riser
,”
J. Ship Mech.
,
14
(
6
), pp.
606
617
.
14.
Zhang
,
Q.
,
Yang
,
H. B.
,
Huang
,
Y.
, and
Zhang
,
R. X.
,
2012
, “
Effect of Several Key Parameters on the Dynamic Analysis of TTR
,”
J. Ship Mech.
,
3
, pp.
296
306
.
15.
Yu
,
A.
,
Cheng
,
Y.
, and
Bhat
,
S.
,
2008
, “
Evaluation of Key Hydraulic Tensioner Performance Parameters for Ultra Deep Water Applications
,”
ASME
Paper No. OMAE2008-57465.
16.
Yang
,
C. K.
, and
Kim
,
M. H.
,
2010
, “
Linear and Nonlinear Approach of Hydropneumatic Tensioner Modeling for Spar Global Performance
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
1
), p.
011601
.
17.
Lee
,
H.
,
Roh
,
M. I.
,
Ham
,
S. H.
, and
Ha
,
S.
,
2015
, “
Dynamic Simulation of the Wireline Riser Tensioner System for a Mobile Offshore Drilling Unit Based on Multibody System Dynamics
,”
Ocean Eng.
,
106
, pp.
485
495
.
18.
Pestana
,
R. G.
,
Roveri
,
F. E.
,
Franciss
,
R.
, and
Ellwanger
,
G. B.
,
2016
, “
Marine Riser Emergency Disconnection Analysis Using Scalar Elements for Tensioner Modelling
,”
Appl. Ocean Res.
,
59
, pp.
83
92
.
19.
Kang
,
H. S.
,
Kim
,
M. H.
, and
Bhat Aramanadka
,
S. S.
,
2017
, “
Tension Variations of Hydro-Pneumatic Riser Tensioner and Implications for Dry-Tree Interface in Semisubmersible
,”
Ocean Syst. Eng.
,
7
(
1
), pp.
21
38
.
20.
Garrett
,
D. L.
,
1982
, “
Dynamic Analysis of Slender Rods
,”
ASME J. Energy Resour. Technol.
,
104
(
4
), pp.
302
306
.
21.
Bai
,
Y.
, and
Bai
,
Q.
,
2005
,
Subsea Pipelines and Risers
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
469
470
.
You do not currently have access to this content.