This paper deals with the effect of termination restraint due to end fitting on the stress evaluation of tensile armors in unbonded flexible pipes under axial tension. The problem is characterized by one single armoring tendon helically wound on a cylindrical supporting surface subjected to traction. The deviation from the initial helical angle is taken to describe the armor wire path as the pipe is stretched. The integral of this angle change gives the lateral displacement of the wire, which is determined by minimizing the energy functional that consists of the strain energy due to axial strain, local bending and torsion, and the energy dissipated by friction, leading to a variational problem with a variable endpoint. The governing differential equation of the wire lateral displacement, together with the supplementary condition, is derived using the variational method and solved analytically. The developed model is verified with a finite element (FE) simulation. Comparisons between the model predictions and the FE results in terms of the change in helical angle and transverse bending stress show good correlations. The verified model is then applied to study the effects of imposed tension and friction coefficient on the maximum bending stress. The results show that the response to tension is linear, and friction could significantly increase the stress at the end fitting compared with the frictionless case.

References

References
1.
Fernando
,
U. S.
, and
Karabelas
,
G.
,
2014
, “
Analysis of End Fitting Barrier Seal Performance in High Pressure Unbonded Flexible Pipes
,”
ASME
Paper No. OMAE2014-23574.
2.
API
,
2014
, “
Recommended Practice for Flexible Pipe
,” American Petroleum Institute, Washington, DC, Standard No.
API RP 17B
.http://www.americanpetroleuminstitute.com/~/media/files/publications/whats%20new/17b%20e5%20pa.pdf
3.
de Sousa
,
J. R. M.
,
Campello
,
G. C.
,
Bertoni
,
F.
, and
Ellwanger
,
G. B.
,
2013
, “
A FE Model to Predict the Stress Concentration Factors in the Tensile Armor Wires of Flexible Pipes Inside End Fittings
,”
ASME
Paper No. OMAE2013-10995.
4.
Feret
,
J. J.
, and
Bournazel
,
C. L.
,
1987
, “
Calculation of Stresses and Slip in Structural Layers of Unbonded Flexible Pipes
,”
ASME J. Offshore Mech. Arct. Eng.
,
109
(
3
), pp.
263
269
.
5.
Claydon
,
P.
,
Cook
,
G.
,
Brown
,
P. A.
, and
Chandwani
,
R.
,
1992
, “
A Theoretical Approach to Prediction of Service Life of Unbonded Flexible Pipes Under Dynamic Loading Conditions
,”
Mar. Struct.
,
5
(
5
), pp.
399
429
.
6.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Axial-Torsional Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
(
2–3
), pp.
205
227
.
7.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Flexural Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
(
2–3
), pp.
229
249
.
8.
McIver
,
D. B.
,
1995
, “
A Method of Modelling the Detailed Component and Overall Structural Behaviour of Flexible Pipe Sections
,”
Eng. Struct.
,
17
(
4
), pp.
254
266
.
9.
Kraincanic
,
I.
, and
Kebadze
,
E.
,
2001
, “
Slip Initiation and Progression in Helical Armouring Layers of Unbonded Flexible Pipes and Its Effect on Pipe Bending Behavior
,”
J. Strain Anal. Eng.
,
36
(
3
), pp.
265
275
.
10.
Leroy
,
J. M.
, and
Estrier
,
P.
,
2001
, “
Calculation of Stresses and Slips in Helical Layers of Dynamically Bent Flexible Pipes
,”
Oil Gas Sci. Technol.
,
56
(
6
), pp.
545
554
.
11.
Custodio
,
A. B.
, and
Vaz
,
M. A.
,
2002
, “
A Nonlinear Formulation for the Axisymmetric Response of Umbilical Cables and Flexible Pipes
,”
Appl. Ocean Res.
,
24
(
1
), pp.
21
29
.
12.
Ramos
,
R.
, Jr.
, and
Pesce
,
C. P.
,
2004
, “
A Consistent Analytical Model to Predict the Structural Behavior of Flexible Risers Subjected to Combined Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
2
), pp.
141
146
.
13.
Dong
,
L.
,
Huang
,
Y.
,
Zhang
,
Q.
, and
Liu
,
G.
,
2013
, “
An Analytical Model to Predict the Bending Behavior of Unbonded Flexible Pipes
,”
J. Ship Res.
,
57
(
3
), pp.
171
177
.
14.
Dong
,
L.
,
Huang
,
Y.
,
Dong
,
G.
,
Zhang
,
Q.
, and
Liu
,
G.
,
2015
, “
Bending Behavior Modeling of Unbonded Flexible Pipes Considering Tangential Compliance of Interlayer Contact Interfaces and Shear Deformations
,”
Mar. Struct.
,
42
, pp.
154
174
.
15.
Dong
,
L.
,
Tu
,
S.
,
Huang
,
Y.
,
Dong
,
G.
, and
Zhang
,
Q.
,
2015
, “
A Model for the Biaxial Dynamic Bending of Unbonded Flexible Pipes
,”
Mar. Struct.
,
43
, pp.
125
137
.
16.
Sævik
,
S.
,
1992
, “
On Stresses and Fatigue in Flexible Pipes
,” Ph.D. thesis, The University of Trondheim, Trondheim, Norway.
17.
Sævik
,
S.
,
1993
, “
A Finite Element Model for Predicting Stresses and Slip in Flexible Pipe Armouring Tendons
,”
Comput. Struct.
,
46
(
2
), pp.
219
230
.
18.
Sævik
,
S.
,
2011
, “
Theoretical and Experimental Studies of Stresses in Flexible Pipes
,”
Comput. Struct.
,
89
(
23–24
), pp.
2273
2291
.
19.
Martindale
,
H. G. A.
,
2006
, “
The Behaviour of Flexible Riser Tensile Armour in the Region of an End Fitting
,”
Ph.D. thesis
, University College London, London.http://discovery.ucl.ac.uk/1445688/
20.
Thorsen
,
M. J.
,
2011
, “
Capacity of Deep Water Flexible Risers
,”
Master's thesis
, Norwegian University of Science and Technology, Trondheim, Norway.https://brage.bibsys.no/xmlui/handle/11250/238058
21.
Zhu
,
L.
, and
Tan
,
Z.
,
2014
, “
End Fitting Effect on Tensile Armor Stress Evaluation in Bent Flexible Pipe
,”
ASME
Paper No. OMAE2014-23928.
22.
Dong
,
L.
,
Huang
,
Y.
,
Dong
,
G.
,
Zhang
,
Q.
, and
Liu
,
G.
,
2016
, “
The Tensile Armour Behaviour of Unbonded Flexible Pipes Close to End Fittings Under Axial Tension
,”
Ships Offshore Struct.
,
11
(
5
), pp.
445
460
.
23.
Dong
,
L.
,
Zhang
,
Q.
,
Huang
,
Y.
, and
Liu
,
G.
,
2017
, “
Slip and Stress of Tensile Armors in Unbonded Flexible Pipes Close to End Fitting Considering an Exponentially Decaying Curvature Distribution
,”
Mar. Struct.
,
51
, pp.
110
133
.
24.
Shen
,
Y.
,
Ma
,
F.
,
Tan
,
Z.
, and
Sheldrake
,
T.
,
2008
, “
Development of the End Fitting Tensile Wires Fatigue Analysis Model: Sample Tests and Validation in an Unbonded Flexible Pipe
,”
Offshore Technology Conference
, Houston, TX, May 5–8, Paper No.
OTC-19197-MS
.
25.
Campello
,
G.
,
Bertoni
,
F.
,
de Sousa
,
J. R. M.
,
Carpigiani
,
M.
,
Vardaro
,
E.
, and
Mudry
,
G.
,
2012
, “
A Novel Concept of Flexible Pipe End Fitting: Tensile Armor Foldless Assembly
,”
ASME
Paper No. OMAE2012-83511.
26.
Connaire
,
A.
,
Smyth
,
J.
,
Nestor
,
R.
,
Tanaka
,
R.
, and
Albuquerque
,
E.
,
2013
, “
Validation of Solid Modeling and Analysis Techniques for Response Prediction of Deepwater Flexible Pipe
,”
ASME
Paper No. OMAE2013-10750.
27.
Borges
,
M. F.
,
Vardaro
,
E.
,
Campello
,
G.
, and
Kwietniewski
,
C. E. F.
,
2015
, “
New Methodology for Flexible Riser End-Fittings Fatigue Assessment Based on Remote S-N Curves
,”
ASME
Paper No. OMAE2015-42163.
28.
Campello
,
G. C.
,
de Sousa
,
J. R. M.
, and
Vardaro
,
E.
,
2016
, “
An Analytical Approach to Predict the Fatigue Life of Flexible Pipes Inside End Fittings
,”
Offshore Technology Conference
, Houston, TX, May 2–5, Paper No.
OTC-27199-MS
.
29.
Chien
,
W. Z.
,
1980
,
Variational Principles and Finite Element Methods
, Vol.
I
,
Science Press
,
Beijing, China
, Chap. 3 (in Chinese).
30.
ANSYS, Inc.
,
2016
, “
ANSYS Mechanical APDL Contact Technology Guide, Release 17.0.
,” ANSYS Inc., Canonsburg, PA.
You do not currently have access to this content.