In this study, a computational fluid dynamics model based on the volume of fluid (VOF) method is developed to simulate the dynamic sloshing response to external excitations. The modal analysis model based on the linear potential theory is established to predict natural sloshing frequencies and the corresponding mode shapes in three-phase separators. In addition, the effects of separator location, length-to-diameter ratio, oil/water level, porosity, and spacing of perforated baffles on the sloshing response are evaluated quantitatively. Furthermore, comprehensive approaches are proposed to mitigate the sloshing, like enhancing viscous damping effect, reducing the intensity of external excitation sources, and keeping away from the resonant frequencies. Finally, a practical application is carried out to display the optimal design of a three-phase separator. The results show that three-phase separators should be located as close as possible to the center of rotation (COR) of the floating production units (FPU). The length-to-diameter ratio is recommended to be no greater than three. Once the fluids can be separated to reach their respective interfaces, the liquid level should be increased as high as possible, whereas the water level should be lowered as far as possible. There is an almost inversely linear relationship between the antisloshing performance of a perforated baffle and its porosity. The antisloshing performance is attenuated rapidly when the spacing distance of a pair of baffles exceeds a specific range. This research extends the existing scope of sloshing suppression approaches and provides useful guidance in the design of FPU-based three-phase separators.

References

References
1.
Odijie
,
A. C.
,
Wang
,
F.
, and
Ye
,
J.
,
2017
, “
A Review of Floating Semisubmersible Hull Systems: Column Stabilized Unit
,”
Ocean. Eng.
,
144
, pp.
191
202
.
2.
Editorial Board for Design Guidance in Offshore Oil Engineering
,
2007
,
Design for FPSO and Single Point Mooring System in Offshore Oil Engineering
,
China Petroleum Press
,
Beijing, China
.
3.
API
,
2013
, “
Design and Hazards Analysis for Offshore Production Facilities
,” American Petroleum Institute, Washington, DC, Standard No. API RP 14J.
4.
API
,
2008
, “
Recommended Practice for Development of a Safety and Environmental Management Program for Offshore Operations and Facilities
,” American Petroleum Institute, Washington, DC, Standard No. API RP 75.
5.
API
,
2011
, “
Planning, Designing, and Constructing Floating Production Systems
,” American Petroleum Institute, Washington, DC, Standard No.
API RP 2FPS.
6.
Lee
,
C. M.
,
Dijk
,
E. V.
,
Legg
,
M.
, and
Byeseda
,
J.
,
2004
, “
Field Confirmation of CFD Design for FPSO-Mounted Separator
,”
Offshore Technology Conference
, Houston, TX, May 3–6, Paper No.
OTC-16137-MS
.
7.
Frankiewicz
,
T.
, and
Lee
,
C. M.
,
2002
, “
Using Computational Fluid Dynamics (CFD) Simulation to Model Fluid Motion in Process Vessels on Fixed and Floating Platforms
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Sept. 29–Oct. 2, SPE Paper No.
SPE-77494-MS
.
8.
Waldie
,
B.
, and
White
,
G.
,
2000
, “
Damping Characteristics of Baffles for Suppression of Marine Motion Effects in Primary Separators
,”
Chem. Eng. Res. Des.
,
78
(
5
), pp.
698
706
.
9.
Eswaran
,
M.
,
Saha
,
U. K.
, and
Maity
,
D.
,
2009
, “
Effect of Baffles on a Partially Filled Cubic Tank: Numerical Simulation and Experimental Validation
,”
Comput. Struct.
,
87
(
3–4
), pp.
198
205
.
10.
Belakroum
,
R.
,
Kadja
,
M.
,
Mai
,
T. H.
, and
Maalouf
,
C.
,
2010
, “
An Efficient Passive Technique for Reducing Sloshing in Rectangular Tanks Partially Filled With Liquid
,”
Mech. Res. Commun.
,
37
(
3
), pp.
341
346
.
11.
Lu
,
Y. J.
, and
Chai
,
S. H.
,
2008
, “
CFD Simulation and Engineering Mitigation of Liquid Sloshing in Topside Process Vessel on Floating Production Platform
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Sept. 21–24, SPE Paper No.
SPE-115762-MS
.
12.
Faltinsen
,
O. M.
,
1978
, “
A Numerical Nonlinear Method of Sloshing in Tanks With Two-Dimensional Flow
,”
J. Ship. Res.
,
22
(
3
), pp.
193
202
.
13.
Nakayama
,
T.
, and
Washizu
,
K.
,
1981
, “
The Boundary Element Method Applied to the Analysis of Two-Dimensional Nonlinear Sloshing Problems
,”
Int. J. Numer. Methods Eng.
,
17
(
11
), pp.
1631
1646
.
14.
Cho
,
J. R.
, and
Lee
,
H. W.
,
2004
, “
Non-Linear Finite Element Analysis of Large Amplitude Sloshing Flow in Two-Dimensional Tank
,”
Int. J. Numer. Methods Eng.
,
61
(
4
), pp.
514
531
.
15.
Nagashima
,
T.
,
2009
, “
Sloshing Analysis of a Liquid Storage Container Using Level Set X-FEM
,”
Commun. Numer. Methods Eng.
,
25
(
4
), pp.
357
–3
79
.
16.
Frandsen
,
J. B.
, and
Borthwick
,
A. G. L.
,
2003
, “
Simulation of Sloshing Motions in Fixed and Vertically Excited Containers Using a 2-D Inviscid σ-Transformed Finite Difference Solver
,”
J. Fluid. Struct.
,
18
(
2
), pp.
197
214
.
17.
Lee
,
S. H.
,
Lee
,
Y. G.
, and
Jeong
,
K. L.
,
2011
, “
Numerical Simulation of Three-Dimensional Sloshing Phenomena Using a Finite Difference Method With Marker-Density Scheme
,”
Ocean Eng.
,
38
(
1
), pp.
206
225
.
18.
Frandsen
,
J. B.
,
2004
, “
Sloshing Motions in Excited Tanks
,”
J. Comput. Phys.
,
196
(
1
), pp.
53
87
.
19.
Liu
,
D. M.
, and
Lin
,
P. Z.
,
2008
, “
A Numerical Study of Three-Dimensional Liquid Sloshing in Tanks
,”
J. Comput. Phys.
,
227
(
8
), pp.
3921
3939
.
20.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.
21.
Juric
,
D.
, and
Tryggvason
,
G.
,
1996
, “
A Front-Tracking Method for Dendritic Solidification
,”
J. Comput. Phys.
,
123
(
1
), pp.
127
148
.
22.
Cao
,
X. Y.
,
Ming
,
F. R.
, and
Zhang
,
A. M.
,
2014
, “
Sloshing in a Rectangular Tank Based on SPH Simulation
,”
Appl. Ocean. Res.
,
47
(
2
), pp.
241
254
.
23.
Wang
,
L.
,
Wang
,
Z.
, and
Li
,
Y.
,
2013
, “
A SPH Simulation on Large-Amplitude Sloshing for Fluids in a Two-Dimensional Tank
,”
Earthquake Eng. Eng. Vib.
,
12
(
1
), pp.
135
142
.
24.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
25.
Elahi
,
R.
,
Passandideh-Fard
,
M.
, and
Javanshir
,
A.
,
2015
, “
Simulation of Liquid Sloshing in 2D Containers Using the Volume of Fluid Method
,”
Ocean Eng.
,
96
, pp.
226
244
.
26.
Shadloo
,
M. S.
,
Oger
,
G.
, and
Touzé
,
D. L.
,
2016
, “
Smoothed Particle Hydrodynamics Method for Fluid Flows, Towards Industrial Applications: Motivations, Current State, and Challenges
,”
Comput. Fluids
,
136
, pp.
11
34
.
27.
Park
,
T. H.
,
Lee
,
Y. W.
,
Cho
,
J. W.
, et al. .,
2005
, “
Internal Flow Analysis of FPU Oil Separator Considering Six Degrees of Freedom Ship Movement
,”
Fifteen International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers
, Seoul, South Korea, June 19–24, Paper No.
ISOPE-I-05-268
.
28.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University Press
,
Cambridge, UK
.
29.
Bao
,
G. W.
, and
Wang
,
Z. W.
,
2003
, “
Finite Element Method for Eigen Problem of Liquid 3D Sloshing
,”
Chin. Q. Mech.
,
24
(
2
), pp.
185
190
.
30.
Pan
,
L. J.
,
Wu
,
Z. J.
,
Zhang
,
B. M.
,
Zhang, J. F.
, and
Du, S. Y.
,
2007
, “
Modal Analysis of Liquid Filled in Tank Applying Rayleigh-Ritz Method
,”
J. Harbin. Eng. Univ.
,
28
(
1
), pp.
31
34
.
31.
ANSYS
,
2013
, “
ANSYS-FLUENT Solver Theory Guide
,” ANSYS, Inc., Canonsburg, PA.
32.
Cen
, ,
K.
,
Li
,
C. J.
,
Zhao
,
X. F.
, and
Yin
,
J. C.
,
2013
, “
Numerical Simulation on the Liquid Sloshing Suppression in Horizontal Three-Phase Separator Mounted on FPSO
,”
Chin. J. Hydrodyn.
,
28
, pp.
675
683
.
33.
Gui
,
F. K.
, and
Jiang
,
S. C.
,
2014
, “
Numerical Simulation of Liquid Sloshing Problem Under Resonant Excitation
,”
Adv. Mech. Eng.
,
6
, pp.
1
7
.
34.
Akyildiz
,
H.
, and
Ünal
,
E.
,
2005
, “
Experimental Investigation of Pressure Distribution on a Rectangular Tank Due to the Liquid Sloshing
,”
Ocean. Eng.
,
32
(
11–12
), pp.
1503
1516
.
35.
Guan
,
Y. M.
,
Ye
,
H. K.
,
Chen
,
Q. R.
, and
Feng
,
D. K.
,
2010
, “
Numerical Simulating Liquid Sloshing in 3D Tanks With Baffles Based Boundary Element Method
,”
J. Huazhong Univ. Sci. Technol. (Natural Sci. Ed.)
,
38
(
4
), pp.
102
112
.
36.
Wang
,
W.
,
Li
,
J. F.
, and
Wang
,
T. S.
,
2005
, “
Study on Sloshing Damping in a Container of Spacecraft—Part I: Theory
,”
J. Astronaut.
,
26
(
6
), pp.
687
692
.
37.
Faltinsen
,
O. M.
,
1974
, “
A Nonlinear Theory of Sloshing in Rectangular Tanks
,”
J. Ship. Res.
,
18
(
4
), pp.
224
241
.
38.
Mansard
,
E. P. D.
, and
Funke
,
E. R.
,
1990
, “
On the Fitting of JONSWAP Spectra to Measured Sea States
,”
Coast. Eng.
,
22
, pp.
464
477
.
39.
CNOOC
,
2008
, “
XJ23-1 FPSO Hydrodynamic and Motion Analysis Report
,” China National Offshore Oil Co., Beijing, China.
40.
API
,
2009
, “
Specification for Oil and Gas Separators
,” American Petroleum Institute, Washington, DC, Standard No. API 12J.
You do not currently have access to this content.