Operations and maintenance activities have a significant impact on the energy cost for offshore wind turbines. Analytical methods such as reliability block diagrams and Markov processes along with simulation approaches have been widely used in planning and optimizing operations and maintenance actions in industrial systems. Generalized stochastic Petri nets (GSPNs) with predicates coupled with Monte Carlo simulation (MCS) are applied in this paper to model the planning of operations and maintenance activities of an offshore wind turbine. The merits of GSPN in modeling complex and multicomponent systems are addressed. Three maintenance categories classified according to the size and weight of the components to be replaced and the logistics involved, such as vessels, maintenance crew and spares and, the associated delays, and costs are included in the model. The weather windows for accessing the wind turbine are also modeled. Corrective maintenance (CM) based on replacements and age-dependent preventive maintenance (PM) with imperfect repair are modeled and compared in terms of the wind turbine's performance (e.g., availability and loss production) and of the operations and maintenance costs.

References

References
1.
Nielsen
,
J. J.
, and
Sørensen
,
J. D.
,
2011
, “
On Risk-Based Operation and Maintenance of Offshore Wind Turbine Components
,”
Reliab. Eng. Syst. Saf.
,
96
(1), pp.
218
229
.
2.
Obdam
,
T.
,
Rademakers
,
L.
,
Braam
,
H.
, and
Eecen
,
P.
,
2007
, “Estimating Costs of Operation and Maintenance of Offshore Wind Farms,” Energy Research Centre of the Netherlands, Petten, The Netherlands, Report No.
ECN-M-07-120
.https://www.ecn.nl/docs/library/report/2007/m07045.pdf
3.
Zio
,
E.
,
Baraldi
,
P.
, and
Patelli
,
E.
,
2006
, “
Assessment of the Availability of an Offshore Installation by Monte Carlo Simulation
,”
Int. J. Pressure Vessels Piping
,
83
(4), pp.
312
320
.
4.
Zio
,
E.
,
Marella
,
M.
, and
Podofillini
,
L.
,
2007
, “
A Monte Carlo Simulation Approach to the Availability Assessment of Multi-State Systems With Operational Dependencies
,”
Reliab. Eng. Syst. Saf.
,
92
(7), pp.
871
882
.
5.
Zio
,
E.
,
2009
, “
Reliability Engineering: Old Problems and New Challenges
,”
Reliab. Eng. Syst. Saf.
,
94
(2), pp.
125
141
.
6.
Byon
,
E.
,
Pérez
,
E.
,
Ntaimo
,
L.
, and
Ding
,
Y.
,
2011
, “
Simulation of Wind Farm Operations and Maintenance Using DEVS
,”
Simulation
,
87
(
12
), pp.
1091
1115
.
7.
Byon
,
E.
,
Ding
,
Y.
, and
Ntaimo
,
L.
,
2010
, “
Optimal Maintenance Strategies for Wind Turbine Systems Under Stochastic Weather Conditions
,”
IEEE Trans. Reliab.
,
59
(
2
), pp.
393
404
.
8.
Byon
,
E.
, and
Ding
,
Y.
,
2010
, “
Season-Dependent Condition-Based Maintenance for a Wind Turbine Using a Partially Observed Markov Decision Process
,”
IEEE Trans. Power Syst.
,
25
(
4
), pp.
1823
1834
.
9.
Byon
,
E.
,
2013
, “
Wind Turbine Operations and Maintenance: A Tractable Approximation of Dynamic Decision-Making
,”
IIE Trans.
,
45
(
11
), pp.
1188
1201
.
10.
Leigh
,
J. M.
, and
Dunnett
,
S. J.
,
2016
, “
Use of Petri Nets to Model the Maintenance of Wind Turbines
,”
Qual. Reliab. Eng. Int.
,
32
(
1
), pp.
167
180
.
11.
Santos, F.
,
Teixeira, A. P.
, and
Guedes Soares, C.
, 2015, “
Modelling and Simulation of the Operation and Maintenance of Offshore Wind Turbines
,”
Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
,
229
(5), pp. 385–393.
12.
Memarzadeh
,
M.
,
Pozzi
,
M.
, and
Kolter
,
J. Z.
,
2015
, “
Optimal Planning and Learning in Uncertain Environments for the Management of Wind Farms
,”
J. Comput. Civ. Eng.
,
29
(
5
), pp.
4014
4076
.
13.
Signoret
,
J.-P.
,
Dutuit
,
Y.
,
Cacheux
,
P.-J.
,
Folleau
,
C.
,
Collas
,
S.
, and
Thomas
,
P.
,
2013
, “
Make Your Petri Nets Understandable: Reliability Block Diagrams Driven Petri Nets
,”
Reliab. Eng. Syst. Saf.
,
113
, pp.
61
75
.
14.
Dinwoodie
,
I.
,
Endrerud
,
O.-E. V.
,
Hofmann
,
M.
,
Martin
,
R.
, and
Sperstad
,
I. B.
,
2015
, “
Reference Cases for Verification of Operation and Maintenance Simulation Models for Offshore Wind Farms
,”
Wind Eng.
,
39
(
1
), pp.
1
14
.
15.
Ding
,
F.
, and
Tian
,
Z.
,
2012
, “
Opportunistic Maintenance for Wind Farms Considering Multi-Level Imperfect Maintenance Thresholds
,”
Renewable Energy
,
45
, pp.
175
182
.
16.
Malhotra
,
M.
, and
Trivedi
,
K. S.
,
1995
, “
Dependability Modelling Using Petri Nets
,”
IEEE Trans. Reliab.
,
44
(
3
), pp.
428
440
.
17.
Dutuit
,
Y.
,
Châtelet
,
E.
,
Signoret
,
J.-P.
, and
Thomas
,
P.
,
1997
, “
Dependability Modelling and Evaluation by Using Stochastic Petri Nets: Application to Two Test Cases
,”
Reliab. Eng. Syst. Saf.
,
55
(
2
), pp.
117
124
.
18.
Boiteau
,
M.
,
Dutuit
,
Y.
,
Rauzy
,
A.
, and
Signoret
,
J.-P.
,
2006
, “
The AltaRica Data-Flow Language in Use: Modelling of Production Availability of a Multi-State System
,”
Reliab. Eng. Syst. Saf.
,
91
(7), pp.
747
755
.
19.
Dutuit
,
Y.
,
Innal
,
F.
,
Rauzy
,
A.
, and
Signoret
,
J.-P.
,
2008
, “
Probabilistic Assessments in Relationship With Safety Integrity Levels by Using Fault Trees
,”
Reliab. Eng. Syst. Saf.
,
93
(12), pp.
1867
1876
.
20.
Santos
,
F. P.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2012
, “
Production Regularity Assessment Using Stochastic Petri Nets With Predicates
,”
Maritime Technology and Engineering
,
C.
Guedes Soares
,
Y.
Garbatov
,
S.
Sutulo
, and
T. A.
Santos
, eds.,
Taylor & Francis Group
,
London
, pp.
441
450
.
21.
Murata
,
T.
,
1989
, “
Petri Nets: Properties, Analysis and Applications
,”
Proc. IEEE
,
77
(
4
), pp.
541
580
.
22.
Zhang
,
X.
,
Sun
,
L.
,
Sun
,
H.
,
Guo
,
Q.
, and
Bai
,
X.
,
2016
, “
Floating Offshore Wind Turbine Reliability Analysis Based on System Grading and Dynamic FTA
,”
J. Wind Eng. Ind. Aerodyn.
,
154
, pp.
21
33
.
23.
Peterson
,
J. L.
,
1977
, “
Petri Nets
,”
Comput. Surv.
,
9
(
3
), pp.
223
252
.
24.
Peterson
,
J. L.
,
1981
,
Petri Net Theory and the Modelling of Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Marsan
,
M. A.
,
Balbo
,
G.
,
Conte
,
G.
,
Donatelli
,
S.
, and
Franceschinis
,
G.
,
1995
,
Modelling With Generalized Stochastic Petri Nets
,
Wiley
,
New York
.
26.
SATODEV
,
2013
, “User Manual, GRIF, Petri Nets With Predicates,” SATODEV, Mérignac, France.
27.
LORC, 2013, “LORC Capacity Factors,” Lindø Offshore Renewables Center, Munkebo, Denmark.
28.
Ribrant
,
J.
,
2006
, “Reliability Performance and Maintenance—A Survey of Failures in Wind Power Systems,”
M.Sc. thesis
, KTH School of Electrical Engineering, Stockholm, Sweden.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.561.2279&rep=rep1&type=pdf
29.
Durstewitz
,
M
., eds.,
2005
, “Windenergie Report Deutschland 2004-2005,” Institut für Solare Energieversorgungstechnik (ISET), Kassel, Germany.
30.
Rademakers
,
L. W. M. M.
, and
Braam
,
H.
,
2002
, “O&M Aspects of the 500 MW Offshore Wind Farm at NL7 (80 × 6 MW Turbines)—Baseline Configuration,” Energy research Centre of the Netherlands, Petten, The Netherlands.
31.
BVG Associates
, 2010, “
A Guide to an Offshore Wind Farm
,” BVG Associates, London.
32.
Faulstich
,
S.
,
Hahn
,
B.
, and
Tavner
,
P. J.
,
2011
, “
Wind Turbine Downtime and Its Importance for Offshore Deployment
,”
Wind Energy
,
14
(3), pp.
327
337
.
33.
Bueno Gayo, J.
, 2011, “
Final Publishable Summary of Results of Project ReliaWind—Report Prepared for the European Commission
,” European Commission, Brussels, Belgium, Project No.
212966
.http://cordis.europa.eu/publication/rcn/14854_en.html
34.
IRENA
,
2012
, “
Renewable Energy Technologies: Cost Analysis Series
,”
Power Sector
, Vol.
1
, International Renewable Energy Agency, Abu Dhabi, United Arab Emirates.
You do not currently have access to this content.