This paper presents a numerical study of the dynamic performance of a vertical axis tidal current turbine. First, we introduce the geometrically exact beam theory along with its numerical implementation the geometric exact beam theory (GEBT), which are used for structural modeling. We also briefly review the variational-asymptotic beam sectional analysis (VABS) theory and discrete vortex method with free-wake structure (DVM-UBC), which provide the one-dimensional (1D) constitutive model for the beam structures and the hydrodynamic forces, respectively. Then, we validate the current model with results obtained by ANSYS using three-dimensional (3D) solid elements and good agreements are observed. We investigate the dynamic performance of the tidal current turbine including modal behavior and transient dynamic performance under hydrodynamic loads. Finally, based on the results in the global dynamic analysis, we study the local stress distributions at the joint between blade and arm by VABS. It is concluded that the proposed analysis method is accurate and efficient for tidal current turbine and has a potential for future applications to those made of composite materials.

References

References
1.
Musial
,
W.
,
Lawson
,
M.
, and
Rooney
,
S.
,
2013
, “Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-5000-57605
.https://www.nrel.gov/docs/fy13osti/57605.pdf
2.
Li
,
Y.
,
Karri
,
N.
, and
Wang
,
Q.
,
2014
, “
Three-Dimensional Numerical Analysis on Blade Response of a Vertical-Axis Tidal Current Turbine Under Operational Conditions
,”
J. Renewable Sustainable Energy
,
6
(4), p.
043123
.
3.
Li
,
Y.
, and
Çalişal
,
S. M.
,
2010
, “
A Discrete Vortex Method for Simulating a Stand-Alone Tidal-Current Turbine: Modeling and Validation
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
3
), p.
031102
.
4.
Bahaj
,
A.
,
Batten
,
W.
, and
McCann
,
G.
,
2007
, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
,
32
(
15
), pp.
2479
2490
.
5.
Coiro
,
D.
,
De Marco
,
A.
,
Nicolosi
,
F.
,
Melone
,
S.
, and
Montella
,
F.
,
2005
, “
Dynamic Behaviour of the Patented Kobold Tidal Current Turbine: Numerical and Experimental Aspects
,”
Acta Polytech.
,
45
(
3
), pp. 77–84.https://ojs.cvut.cz/ojs/index.php/ap/article/viewFile/718/550
6.
Young
,
Y. L.
,
Motley
,
M. R.
, and
Yeung
,
R. W.
,
2009
, “
Three-Dimensional Numerical Modeling of the Transient Fluid-Structural Interaction Response of Tidal Turbines
,”
ASME J. Offshore Mech. Arct. Eng.
,
132
(
1
), p. 011101.
7.
Davies
,
P.
,
Germain
,
G.
,
Gaurier
,
B.
,
Boisseau
,
A.
, and
Perreux
,
D.
,
2013
, “
Evaluation of the Durability of Composite Tidal Turbine Blades
,”
Philos. Trans. R. Soc. A
,
371
(1985), p. 20120187.
8.
Reissner
,
E.
,
1973
, “
On One-Dimensional Large-Displacement Finite-Strain Beam Theory
,”
Stud. Appl. Math.
,
52
(2), pp.
87
95
.
9.
Danielson
,
D.
, and
Hodges
,
D.
,
1987
, “
Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor
,”
ASME J. Appl. Mech.
,
54
(
2
), pp.
258
262
.
10.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
, and
Ghiringhelli
,
G.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
(
14
), pp.
403
413
.
11.
Su
,
W.
, and
Cesnik
,
C.
,
2011
, “
Strain-Based Geometrically Nonlinear Beam Formulation for Modeling Very Flexible Aircraft
,”
Int. J. Solids Struct.
,
48
(
16–17
), pp.
2349
2360
.
12.
Yu
,
W.
,
Hodges
,
D. H.
,
Volovoi
,
V.
, and
Cesnik
,
C. E.
,
2002
, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams
,”
Int. J. Solids Struct.
,
39
(19), pp.
5101
5121
.
13.
Wang
,
Q.
, and
Yu
,
W.
,
2011
, “
Variational-Asymptotic Modeling of the Thermoelastic Behavior of Composite Beams
,”
Compos. Struct.
,
93
(9), pp.
2330
2339
.
14.
Blasques
,
J.
,
Bitsche
,
R.
,
Fedorov
,
V.
, and
Lazarov
,
B.
,
2015
, “
Accuracy of an Efficient Framework for Structural Analysis of Wind Turbine Blades
,”
Wind Energy
,
19
(9), pp.
1603
1621
.
15.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Michael
,
E. P.
, and
Witt
,
R. J.
,
2001
,
Concepts and Applications of Finite Element Analysis
,
4th ed.
,
Wiley
,
New York
.
16.
Yu
,
W.
, and
Blair
,
M.
,
2012
, “
GEBT: A General-Purpose Nonlinear Analysis Tool for Composite Beams
,”
Compos. Struct.
,
94
(9), pp.
2677
2689
.
17.
Wang
,
Q.
, and
Yu
,
W.
,
2017
, “
Geometrically Nonlinear Analysis of Composite Beams Using Wiener-Milenković Parameters
,”
J. Renewable Sustainable Energy
,
9
(3), p.
033306
.
18.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
19.
Bauchau
,
O. A.
,
2010
,
Flexible Multibody Dynamics
,
Springer
,
New York
.
20.
Hodges
,
D. H.
,
1990
, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
,
26
(11), pp.
1253
1273
.
21.
Berdichevskii
,
V.
,
1979
, “
Variational-Asymptotic Method of Constructing a Theory of Shells
,”
J. Appl. Math. Mech.
,
43
(
4
), pp.
711
736
.
22.
Cesnik
,
C. E.
, and
Hodges
,
D. H.
,
1997
, “
VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling
,”
J. Am. Helicopter Soc.
,
42
(
1
), pp.
27
38
.
23.
Anderson
,
D. J.
,
2005
,
Fundamentals of Aerodynamics
,
McGraw-Hill
,
New York
.
24.
Li
,
Y.
, and
Calisal
,
S. M.
,
2010
, “
Three-Dimensional Effects and Arm Effects on Modeling a Vertical Axis Tidal Current Turbine
,”
Renewable Energy
,
35
(
10
), pp.
2325
2334
.
25.
Wang
,
Q.
, and
Yu
,
W.
,
2014
, “
A Variational Asymptotic Approach for Thermoelastic Analysis of Composite Beams
,”
Adv. Aircr. Spacecr. Sci.
,
1
(1), pp.
93
123
.
You do not currently have access to this content.