In this paper, numerical and experimental investigations are presented on the hydrodynamic performance of a horizontal tidal current turbine (TCT) designed and made by our Dalian University of Technology (DUT) research group. Thus, it is given the acronym: DUTTCT. An open-source computational fluid dynamics (CFD) solver, called pimpledymfoam, is employed to perform numerical simulations for design analysis, while experimental tests are conducted in a DUT towing tank. The important factors, including self-starting velocity, tip speed ratio (TSR), and yaw angle, which play important roles in the turbine output power, are studied in the investigations. Results obtained show that the maximum power efficiency of the newly developed turbine (DUTTCT) could reach up to 47.6%, and all its power efficiency is over 40% in the TSR range from 3.5 to 6; the self-starting velocity of DUTTCT is about 0.745 m/s; and the yaw angle has negligible influence on its efficiency as it is less than 10 deg.

References

References
1.
Uihlein
,
A.
, and
Magagna
,
D.
,
2016
, “
Wave and Tidal Current Energy—A Review of the Current State of Research Beyond Technology
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1070
1081
.
2.
Liu
,
H. W.
,
Ma
,
S.
,
Li
,
W.
,
Gu
,
H. G.
,
Lin
,
Y. G.
, and
Sun
,
X. J.
,
2011
, “
A Review on the Development of Tidal Current Energy in China
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1141
1146
.
3.
Li
,
D.
,
Wang
,
S. J.
, and
Yuan
,
P.
,
2010
, “
An Overview of Development of Tidal Current in China: Energy Resource, Conversion Technology and Opportunities
,”
Renewable Sustainable Energy Rev.
,
14
(9), pp.
2896
2905
.
4.
Li
,
W.
,
Zhou
,
H. B.
,
Liu
,
H. W.
,
Lin
,
Y. G.
, and
Xu
,
Q. K.
,
2016
, “
Review on the Blade Design Technologies of Tidal Current Turbine
,”
Renewable Sustainable Energy Rev.
,
63
, pp.
414
422
.
5.
Li
,
Y.
,
2014
, “
On the Definition of the Power Coefficient of Tidal Current Turbines and Efficiency of Tidal Current Turbine Farms
,”
Renewable Energy
,
68
, pp.
868
875
.
6.
Zhao
,
Y.
, and
Su
,
X. H.
,
2010
, “
Tidal Energy: Technologies and Recent Developments
,”
IEEE International Energy Conference and Exhibition
, Manama, Bahrain, Dec. 18–22, pp.
618
623
.
7.
Zhou
,
Z. B.
,
Benbouzid
,
M.
,
Charpentier
,
J. F.
,
Scuiller
,
F.
, and
Tang
,
T. H.
,
2017
, “
Developments in Large Marine Current Turbine Technologies—A Review
,”
Renewable Sustainable Energy Rev.
,
71
, pp.
852
858
.
8.
Churchfield
,
M.
,
Li
,
Y.
, and
Moriarty
,
P.
,
2013
, “
A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines
,”
Philos. Trans. R. Soc. A
,
371
(1985), p.
20120421
.
9.
Wang
,
S. Q.
,
Sun
,
K.
,
Xu
,
G.
,
Liu
,
Y. T.
, and
Bai
,
X.
,
2017
, “
Hydrodynamic Analysis of Horizontal-Axis Tidal Current Turbine With Rolling and Surging Coupled Motions
,”
Renewable Energy
,
102
(Part A), pp.
87
97
.
10.
Elie
,
B.
,
Oger
,
G.
,
Guillerm
,
P.-E.
, and
Alessandrini
,
B.
,
2017
, “
Simulation of Horizontal Axis Tidal Turbine Wakes Using a Weakly-Compressible Cartesian Hydrodynamic Solver With Local Mesh Refinement
,”
Renewable Energy
,
108
, pp.
336
354
.
11.
Bai
,
G. H.
,
Li
,
W.
,
Chang
,
H.
, and
Li
,
G. J.
,
2016
, “
The Effect of Tidal Current Directions on the Optimal Design and Hydrodynamic Performance of a Three-Turbine System
,”
Renewable Energy
,
94
, pp.
48
54
.
12.
OpenFOAM,
2014
, “
OpenFOAM Programmer's Guide 2.3.0
,” The OpenFOAM Foundation Ltd., London.
13.
Lawson
,
M. J.
,
Li
,
Y.
, and
Danny
,
C. S.
,
2011
, “Develop and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine,”
ASME
Paper No. OMAE2011-49863.
14.
Jing
,
F. M.
,
Ma
,
W. J.
,
Zhang
,
L.
,
Wang
,
S. Q.
, and
Wang
,
X. H.
,
2017
, “
Experimental Study of Hydrodynamic Performance of Full-Scale Horizontal Axis Tidal Current Turbine
,”
J. Hydrodyn.
,
29
(
1
), pp.
109
117
.
15.
Gaurier
,
B.
,
Davies
,
P.
,
Deuff
,
A.
, and
Germain
,
G.
,
2013
, “
Flume Tank Characterization of Marine Current Turbine Blade Behaviour Under Current and Wave Loading
,”
Renewable Energy
,
59
, pp.
1
12
.
16.
Bahaj
,
A. S.
,
Molland
,
A. F.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
,
2007
, “
Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renewable Energy
,
32
(3), pp.
407
426
.
17.
Bahaj
,
A. S.
,
Batten
,
W. M. J.
, and
McCann
,
G.
,
2007
, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
,
32
(15), pp.
2479
2490
.
18.
Zhang
,
K. L.
,
2013
, “
Numerical Study of Horizontal Tidal Current Turbine by Using PimpleDyMFoam
,”
Master's thesis
, Dalian University of Technology, Dalian, China.http://www.dissertationtopic.net/doc/1756548
19.
Holzmann, T.
,
Mathematics, Numerics, Derivations and OpenFOAM(R)
, Holzmann CFD, Leoben, Austria.
20.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,”
Ph.D. thesis
, Imperial College London, London.http://powerlab.fsb.hr/ped/kturbo/OpenFOAM/docs/HrvojeJasakPhD.pdf
21.
Jasak
,
H.
, and
Gosman
,
A. D.
,
2003
, “
Element Residual Error Estimate for the Finite Volume Method
,”
Comput. Fluids
,
32
(
2
), pp.
223
248
.
22.
Jasak
,
H.
,
Weller
,
H. G.
, and
Gosman
,
A. D.
,
1999
, “
High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
,
31
(
2
), pp.
431
449
.
23.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
You do not currently have access to this content.