Environmental conditions created by winds blowing oblique to the direction of the waves are necessary to conduct some survivability tests of offshore wind turbines. However, some facilities lack the capability to generate quality waves at a wide range of angles. Thus, having a wind generation system that can be rotated makes generating winds that blow oblique to the waves possible during survivability tests. Rotating the wind generation system may disrupt the flow generated by the fans because of the effect of adjacent walls. Closed or semiclosed wind tunnels may eliminate the issue of wall effects, but these types of wind tunnels could be difficult to position within a wave basin. In this work, a prototype wind generation system that can be adapted for offshore wind turbine testing is investigated. The wind generation system presented in this work has a return that minimizes the effect that the walls could potentially have on the fans. This study characterizes the configuration of a wind generation system using measurements of the velocity field, detailing mean velocities, flow directionality, and turbulence intensities. Measurements were taken downstream to evaluate the expected area of turbine operation and the shear zone. The dataset has aided in the identification of conditions that could potentially prevent the production of the desired flows. Therefore, this work provides a useful dataset that could be used in the design of wind generation systems and in the evaluation of the benefits of recirculating wind generation systems for offshore wind turbine research.

References

References
1.
Heronemus
,
W. E.
,
1972
, “
Pollution-Free Energy From Offshore Winds
,”
Eighth Annual Conference and Exposition Marine Technology Society
, Washington, DC, Sept. 11–13.
2.
Musial
,
W. D.
, and
Butterfield
,
C. P.
,
2004
, “
Future for Offshore Wind Energy in the United States
,”
Energy Ocean Conference
, Palm Beach, FL, June 28–29, pp. 4–6.https://www.nrel.gov/docs/fy04osti/36313.pdf
3.
Chakrabarti
,
S. K.
,
1994
,
Offshore Structure Modeling
,
World Scientific Publishing
,
Singapore
, Chap. 7.
4.
Jonkman
,
J. M.
,
2007
, “
Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-41958
.https://www.nrel.gov/docs/fy08osti/41958.pdf
5.
Jonkman
,
J. M.
, and
Sclavounos
,
P. D.
,
2006
, “
Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/CP-500-39066
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.491.3308&rep=rep1&type=pdf
6.
Browning
,
J. R.
,
Jonkman
,
J.
,
Robertson
,
A.
, and
Goupee
,
A. J.
,
2014
, “
Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model Using the FAST Dynamic Simulation Tool
,”
J. Phys.: Conf. Ser.
,
555
(
1
), p.
012015
.
7.
Roddier
,
D.
,
Cermelli
,
C.
,
Aubault
,
A.
, and
Weinstein
,
A.
,
2010
, “
WindFloat: A Floating Foundation for Offshore Wind Turbines
,”
J. Renewable Sustainable Energy
,
2
(
3
), p.
033104
.
8.
Butterfield
,
S.
,
Musial
,
W.
,
Jonkman
,
J.
,
Sclavounos
,
P.
, and
Wayman
,
L.
,
2007
, “
Engineering Challenges for Floating Offshore Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/CP-500-38776
.https://www.nrel.gov/docs/fy07osti/38776.pdf
9.
de Ridder
,
E.
,
Otto
,
W.
,
Zondervan
,
G.
,
Savenije
,
F.
, and
Huijs
,
F.
,
2013
, “
State of the Art Model Testing Techniques for Floating Wind Turbines
,”
EWEA Offshore
, Frankfurt, Germany, Nov. 19–21.http://www.marin.nl/web/Publications/Publication-items/State-of-the-art-model-testing-techniques-for-floating-wind-turbines.htm
10.
Courbois
,
A.
,
Flamand
,
O.
,
Toularastel
,
J.-L.
,
Ferrant
,
P.
, and
Rousset
,
J.-M.
,
2011
, “
Applying Relevant Wind Generation Techniques to the Case of Floating Wind Turbines
,”
Sixth European and African Conference on Wind Engineering
(
EACWE
), Nantes, France, July 7–13, pp.
1
8
.http://www.iawe.org/Proceedings/EACWE2013/A.Courbois.pdf
11.
Ohana
,
J.
,
Le Boulluec
,
M.
,
Peron
,
E.
,
Klinghammer
,
C.
,
Tancray
,
A.
, and
Mansuy
,
E.
,
2014
, “
Open Jet Blower Type Wind Generator With Variable Wind Speed Capability for Physical Model Testing of Offshore Structures
,”
Fifth International Conference on the Application of Physical Modelling to Port and Coastal Protection
(Coastlab14), Varna, Bulgaria, Sept. 29–Oct. 2.
12.
Bredmose
,
H.
,
Mikkelsen
,
R.
,
Hansen
,
A. M.
,
Laugesen
,
R.
,
Heilskov
,
N.
,
Jensen
,
B.
, and
Kirkegaard
,
J.
,
2015
, “
Experimental Study of the DTU 10 MW Wind Turbine on a TLP Floater in Waves and Wind
,”
EWEA Offshore Conference
, Copenhagen, Denmark, Mar. 10http://orbit.dtu.dk/files/106718982/xperimental_study_of_the_DTU_10_MW_wind_turbine_on_a_TLP_floater_in_waves_presentation.pdf.
13.
Nielsen
,
F. G.
,
Hanson
,
T. D.
, and
Skaare
,
B.
,
2006
, “
Integrated Dynamic Analysis of Floating Offshore Wind Turbines
,”
ASME
Paper No. OMAE2006-92291.
14.
Kimball
,
R. W.
,
Goupee
,
A. J.
,
Coulling
,
A. J.
, and
Dagher
,
H. J.
,
2012
, “
Model Test Comparisons of TLP, Spar-Buoy and Semi-Submersible Floating Offshore Wind Turbine Systems
,”
SNAME Annual Meeting and Expo
, Providence, RI, Oct. 24–26, pp.
24
26
.http://www.sname.org/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=078baa8f-e19b-414f-a6c6-414f1459eb56
15.
Robertson
,
A. N.
,
Jonkman
,
J. M.
,
Masciola
,
M. D.
,
Molta
,
P.
,
Goupee
,
A. J.
, and
Coulling
,
A. J.
,
2013
, “
Summary of Conclusions and Recommendations Drawn From the DeepCWind Scaled Floating Offshore Wind System Test Campaign
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/CP-5000-58076
.https://www.nrel.gov/docs/fy13osti/58076.pdf
16.
Barj
,
L.
,
Stewart
,
S.
,
Stewart
,
G.
,
Lackner
,
M.
,
Jonkman
,
J.
, and
Robertson
,
A.
,
2014
, “
Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine
,”
AIAA
Paper No. 2014-0363.
17.
Navqvi
,
S. K.
,
2012
, “
Scale Model Experiments on Floating Offshore Wind Turbines
,”
Ph.D. dissertation
, Worcester Polytechnic Institute, Worcester, MA.https://web.wpi.edu/Pubs/ETD/Available/etd-052312-133921/unrestricted/knaqvi1.pdf
18.
Bradshaw
,
P.
, and
Mehta
,
R. D.
,
1979
, “
Design Rules for Small Low Speed Wind Tunnels
,”
Aeronaut. J. R. Aeronaut. Soc.
,
83
(827), pp.
443
449
.
19.
Farell
,
C.
, and
Youssef
,
S.
,
1992
, “
Experiments on Turbulence Management Using Screens and Honeycombs
,” University of Minnesota, Minneapolis, MN, Project Report No.
338
.https://conservancy.umn.edu/bitstream/handle/11299/108725/pr338.pdf?sequence=1
20.
Batchelor
,
G. K.
,
1953
,
The Theory of Homogeneous Turbulence
,
Cambridge University Press
,
Cambridge, UK
, pp.
55
75
.
21.
Barlow
,
J.
,
Rae
,
W.
, and
Pope
,
A.
,
1999
,
Low Speed Wind Tunnel Testing
,
Wiley
,
New York
, Chap. 2.
22.
McDonalogue
,
D. J.
, and
Srivastava
,
R. S.
,
1968
, “
Motion of a Fluid in a Curved Tube
,”
Proc. R. Soc. A
,
307
(
1488
), pp.
37
57
.
You do not currently have access to this content.