This paper presents an object-oriented modeling (OOM) approach to model development of marine operation systems, specifically the hydraulic systems of marine cranes. Benefited from the rapid development of computation technology, many modeling and simulation techniques and software tools have proved to be very useful during the product and system development process. However, due to the increasing complexity of the physical systems, many challenges still exist regarding model flexibility, model integration, simulation accuracy, stability, and efficiency. The goal of introducing OOM to complex dynamic systems is to provide flexible, effective, and efficient models for different simulation applications. Previous work presented a virtual prototyping (VP) framework based on the functional mock-up interface (FMI) standard. The advantage of using FMI co-simulation is that modeling and simulation of stiff and strongly coupled systems can be distributed. As a result, the modeling tradeoffs between simulation accuracy and efficiency can be evaluated. The essential features of OOM and its application within dynamic operation system domain are highlighted through a case study. These features include model causality, model encapsulation, and inheritance that facilitate the decomposition and coupling of complex system models for co-simulation. The simulation results based on the proposed VP framework showed speedups in the computation efficiency at the cost of moderate accuracy loss.

References

References
1.
Bye
,
R. T.
,
Osen
,
O. L.
, and
Pedersen
,
B. S.
,
2017
, “
A Computer-Automated Design Tool for Intelligent Virtual Prototyping of Offshore Cranes
,” 31st European Conference on Modelling and Simulation (
ECMS
), Budapest, Hungary, May 23–26, pp. 147–156.http://www.scs-europe.net/dlib/2015/ecms2015acceptedpapers/0147-svt_ECMS2015_0098.pdf
2.
Bak
,
M. K.
,
2014
, “
Model Based Design of Electro-Hydraulic Motion Control Systems for Offshore Pipe Handling Equipment
,”
Ph.D. thesis
, University of Agder, Kristiansand, Norway.https://brage.bibsys.no/xmlui/handle/11250/194938
3.
Modelica
,
2017
, “A Unified Object-Oriented Language for Systems Modeling—Language Specification, Version 3.4 ed,”
The Modelica Association
,
Linkoping, Sweden
, accessed Apr. 10, 2017, http://www.modelica.org/
4.
Blochwitz
,
T.
,
Otter
,
M.
,
Åkesson
,
J.
,
Arnold
,
M.
,
Clauss
,
C.
,
Elmqvist
,
H.
,
Friedrich
,
M.
,
Junghanns
,
A.
,
Mauss
,
J.
,
Neumerkel
,
D.
,
Olsson
,
H.
, and
Viel
,
A.
,
2012
, “
Functional Mockup Interface 2.0: The Standard for Tool Independent Exchange of Simulation Models
,”
The Ninth International Modelica Conference
, Munich, Germany, Sept. 3–5, pp.
173
184
.https://www.researchgate.net/publication/236329725_Functional_Mockup_Interface_20_The_Standard_for_Tool_independent_Exchange_of_Simulation_Models
5.
Chu
,
Y.
,
Hatledal
,
L.
,
Zhang
,
H.
,
Æsøy
,
V.
, and
Ehlers
,
S.
,
2017
, “
Virtual Prototyping for Marine Crane Design and Operations
,”
J. Mar. Sci. Technol.
(accepted).
6.
Chu
,
Y.
,
Deng
,
Y.
,
Pedersen
,
B. S.
, and
Zhang
,
H.
,
2016
, “
Parameterization and Visualization of Marine Crane Concept Design
,”
ASME
Paper No. OMAE2016-54448.
7.
Bastian
,
J.
,
Clauß
,
C.
,
Wolf
,
S.
, and
Schneider
,
P.
,
2011
, “
Master for Co-Simulation Using FMI
,”
Eighth International Modelica Conference
, Dresden, Germany, Mar. 20–22, pp.
115
120
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.385.2988&rep=rep1&type=pdf
8.
Paterno
,
F.
,
1999
,
Model-Based Design and Evaluation of Interactive Applications
,
1st ed.
,
Springer-Verlag
,
London
, pp.
11
30
.
9.
Wymore
,
A. W.
,
1993
,
Model-Based Systems Engineering
, Vol.
3
,
CRC press
,
Boca Raton, FL
, p.
58
.
10.
Estefan
,
J. A.
,
2008
, “
Survey of Model-Based Systems Engineering (MBSE) Methodologies
,” International Council on Systems Engineering, San Diego, CA, Report No.
INCOSE-TD-2007-003-02
.http://www.omgsysml.org/MBSE_Methodology_Survey_RevB.pdf
11.
Rumbaugh
,
J.
,
Jacobson
,
I.
, and
Booch
,
G.
,
2004
,
Unified Modeling Language Reference Manual
,
2nd ed.
,
Pearson Higher Education
,
Boston, MA
, pp.
3
11
.
12.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2014
,
A Practical Guide to SysML: The Systems Modeling Language
,
Morgan Kaufmann
,
Waltham, MA
, pp.
29
49
.
13.
Amálio
,
N.
,
Payne
,
R.
,
Cavalcanti
,
A.
, and
Woodcock
,
J.
,
2016
, “
Checking SysML Models for Co-Simulation BT: Formal Methods and Software Engineering
,”
18th International Conference on Formal Engineering Methods (ICFEM)
, Tokyo, Japan, Nov. 14–18, pp.
450
465
.
14.
Ramos
,
A. L.
,
Ferreira
,
J. V.
, and
Barceló
,
J.
,
2012
, “
Model-Based Systems Engineering: An Emerging Approach for Modern Systems
,”
IEEE Trans. Syst., Man Cybern. Part C
,
42
(
1
), pp.
101
111
.
15.
Pulecchi
,
T.
,
Casella
,
F.
, and
Lovera
,
M.
,
2010
, “
Object-Oriented Modelling for Spacecraft Dynamics: Tools and Applications
,”
Simul. Modell. Pract. Theory
,
18
(
1
), pp.
63
86
.
16.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
,
5th ed.
,
Wiley
,
Hoboken, NJ
, pp.
37
48
.
17.
Borutzky
,
W.
,
1999
, “
Bond Graph Modeling From an Object Oriented Modeling Point of View
,”
Simul. Pract. Theory
,
7
(
5
), pp.
439
461
.
18.
Broenink
,
J. F.
,
1997
, “
Bond-Graph Modeling in Modelica
,”
Ninth European Simulation Symposium
(
ESS
), Passau, Germany, Oct. 19–22, pp.
19
22
.https://www.modelica.org/publications/papers/ESS97w.pdf
19.
Cellier
,
F. E.
, and
Nebot
,
À.
,
2005
, “
The Modelica Bond Graph Library
,”
Fourth International Modelica Conference
, Hamburg, Germany, Mar. 7–8, pp.
57
65
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.4880&rep=rep1&type=pdf
20.
Broenink
,
J. F.
,
1999
, “
Object-Oriented Modeling With Bond Graphs and Modelica
,”
International Conference on Bond Graph Modeling and Simulation
(
ICBGM
), San Francisco, CA, Jan. 17–20, pp.
163
168
.https://pdfs.semanticscholar.org/d057/0a5c97d78eb54608bcf6f6c2e45764426e90.pdf
21.
Chu
,
Y.
, and
Æsøy
,
V.
,
2015
, “
A Multi-Body Dynamic Model Based on Bond Graph for Maritime Hydraulic Crane Operations
,”
ASME
Paper No. OMAE2015-41616.
22.
Chu
,
Y.
,
Æsøy
,
V.
,
Ehlers
,
S.
, and
Zhang
,
H.
,
2015
, “
Integrated Multi-Domain System Modelling and Simulation for Offshore Crane Operations
,”
Ship Technol. Res.
,
62
(
1
), pp.
36
46
.
23.
Viel
,
A.
, and
Imagine
,
L.
,
2014
, “
Implementing Stabilized Co-Simulation of Strongly Coupled Systems Using the Functional Mock-Up Interface 2.0
,”
Tenth International Modelica Conference
, Lund, Sweden, Mar. 10–12, pp.
213
223
.https://www.modelica.org/events/modelica2014/proceedings/html/submissions/ECP14096213_Viel.pdf
24.
Mengist
,
A.
,
Asghar
,
A.
,
Pop
,
A.
,
Fritzson
,
P.
,
Braun
,
W.
,
Siemers
,
A.
, and
Fritzson
,
D.
,
2015
, “
An Open-Source Graphical Composite Modeling Editor and Simulation Tool Based on FMI and TLM Co-Simulation
,”
11th International Modelica Conference
, Versailles, France, Sept. 21–23, pp.
181
188
.https://modelica.org/events/modelica2015/proceedings/html/submissions/ecp15118181_MengistAsgharPopFritzsonBraunSiemersFritzson.pdf
25.
Krammer
,
M.
,
Marko
,
N.
, and
Benedikt
,
M.
,
2016
, “
Interfacing Real-Time Systems for Advanced Co-Simulation—The ACOSAR Approach
,”
CEUR Workshop Proceedings
, Rome, Italy, June 8–10, pp.
32
39
.http://ceur-ws.org/Vol-1675/paper4.pdf
You do not currently have access to this content.