Free vibration analysis of functionally graded (FG) rectangular plates on two-parameter elastic foundation and vertically coupled with fluid is the objective of this work. The fluid domain is considered to be infinite in length, but it is bounded in depth and width directions, and the effects of hydrostatic pressure and free surface waves are not taken into account. The mechanical properties of the FG plates are assumed to vary continuously through the thickness direction according to a power-law distribution of the volume fraction of the constituents. The accuracy and applicability of the formulation is illustrated by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.

References

References
1.
Yang
,
J.
, and
Shen
,
H. S.
,
2001
, “
Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates
,”
Compos. Struct.
,
54
(
4
), pp.
497
508
.
2.
Woo
,
J.
,
Meguid
,
S. A.
, and
Ong
,
L. S.
,
2006
, “
Nonlinear Free Vibration Behavior of Functionally Graded Plates
,”
J. Sound. Vib.
,
289
(
3
), pp.
595
611
.
3.
Abrate
,
S.
,
2008
, “
Functionally Graded Plates Behave Like Homogeneous Plates
,”
Composites: Part B.
,
39
(
1
), pp.
151
158
.
4.
Zhang
,
D. G.
, and
Zhou
,
Y. H.
,
2008
, “
A Theoretical Analysis of FGM Thin Plates Based on Physical Neutral Surface
,”
Comput. Mater. Sci.
,
44
(
2
), pp.
716
720
.
5.
Hasani Baferani
,
A.
,
Saidi
,
A. R.
, and
Jomehzadeh
,
E.
,
2010
, “
An Exact Solution for Free Vibration of Thin Functionally Graded Rectangular Plates
,”
Proc. IMechE Part C
,
225
(
3
), pp.
526
536
.
6.
Fereidoon
,
A.
,
Asghardokht seyedmahalle
,
M.
, and
Mohyeddin
,
A.
,
2011
, “
Bending Analysis of Thin Functionally Graded Plates using Generalized Differential Quadrature Method
,”
Arch. Appl. Mech.
,
81
(
11
), pp.
1523
1539
.
7.
Malekzadeh
,
P.
, and
Alibeygi Beni
,
A.
,
2015
, “
Nonlinear Free Vibration of In-Plane Functionally Graded Rectangular Plates
,”
Mech. Adv. Mater. Struct.
,
22
(
8
), pp.
633
640
.
8.
Pradhan
,
K. K.
, and
Chakraverty
,
S.
,
2015
, “
Static Analysis of Functionally Graded Thin Rectangular Plates With Various Boundary Supports
,”
Arch. Civ. Mech. Eng.
,
15
(
3
), pp.
721
734
.
9.
Malekzadeh
,
P.
, and
Monajjemzadeh
,
S. M.
,
2015
, “
Nonlinear Response of Functionally Graded Plates Under Moving Load
,”
Thin-Walled Struct.
,
96
, pp.
120
129
.
10.
Hosseini-Hashemi
,
S. H.
,
Rokni Damavandi Taher
,
H.
,
Akhavan
,
H.
, and
Omidi
,
M.
,
2010
, “
Free Vibration of Functionally Graded Rectangular Plates Using First-Order Shear Deformation Plate Theory
,”
Appl. Math. Model.
,
34
(
5
), pp.
1276
1291
.
11.
Hosseini-Hashemi
,
S. H.
,
Fadaee
,
M.
, and
Atashipour
,
S. R.
,
2011
, “
Study on the Free Vibration of Thick Functionally Graded Rectangular Plates According to a New Exact Closed-Form Procedure
,”
Compos. Struct.
,
93
(
2
), pp.
722
735
.
12.
Zhao
,
X.
,
Lee
,
Y. Y.
, and
Liew
,
K. M.
,
2009
, “
Free Vibration Analysis of Functionally Graded Plates Using the Element-Free kp-Ritz Method
,”
J. Sound. Vib.
,
319
(
3–5
), pp.
918
939
.
13.
Chen
,
S. S.
,
Xu
,
C. J.
,
Tong
,
G. S.
, and
Wei
,
X.
,
2015
, “
Free Vibration of Moderately Thick Functionally Graded Plates by a Meshless Local Natural Neighbor Interpolation Method
,”
Eng. Anal. Bound. Elem.
,
61
, pp.
114
126
.
14.
Zhu
,
P.
, and
Liew
,
K. M.
,
2011
, “
Free Vibration Analysis of Moderately Thick Functionally Graded Plates by Local Kriging Meshless Method
,”
Compos. Struct.
,
93
(
11
), pp.
2925
2944
.
15.
Hasani Baferani
,
A.
,
Saidi
,
A. R.
, and
Ehteshami
,
H.
,
2011
, “
Accurate Solution for Free Vibration Analysis of Functionally Graded Thick Rectangular Plates Resting on Elastic Foundation
,”
Compos. Struct.
,
93
(
7
), pp.
1842
1853
.
16.
Thai
,
H. T.
, and
Choi
,
D. H.
,
2012
, “
A Refined Shear Deformation Theory for Free Vibration of Functionally Graded Plates on Elastic Foundation
,”
Composites: Part B.
,
43
(
5
), pp.
2335
2347
.
17.
Thai
,
H. T.
,
Park
,
T.
, and
Choi
,
D. H.
,
2013
, “
An Efficient Shear Deformation Theory for Vibration of Functionally Graded Plates
,”
Arch. Appl. Mech.
,
83
(
1
), pp.
137
149
.
18.
Akavci
,
S. S.
,
2014
, “
An Efficient Shear Deformation Theory for Free Vibration of Functionally Graded Thick Rectangular Plates on Elastic Foundation
,”
Compos. Struct.
,
108
, pp.
667
676
.
19.
Duy
,
H. T.
, and
Noh
,
H. C.
,
2015
, “
Analytical Solution for the Dynamic Response of Functionally Graded Rectangular Plates Resting on Elastic Foundation Using a Refined Plate Theory
,”
Appl. Math. Model.
,
39
(
20
), pp.
6243
6257
.
20.
Amabili
,
M.
,
1997
, “
Ritz Method and Substructuring in the Study of Vibration With Strong Fluid–Structure Interaction
,”
J. Sound. Vib.
,
11
(
5
), pp.
507
523
.
21.
Zhou
,
D.
, and
Cheung
,
Y. K.
,
2000
, “
Vibration of Vertical Rectangular Plate in Contact With Water on One Side
,”
Earthquake Eng. Struct. Dyn.
,
29
(
5
), pp.
693
710
.
22.
Hosseini-Hashemi
,
S. H.
,
Karimi
,
M.
, and
Rokni Damavandi Taher
,
H.
,
2010
, “
Vibration Analysis of Rectangular Mindlin Plates on Elastic Foundations and Vertically in Contact With Stationary Fluid by the Ritz Method
,”
Ocean Eng.
,
37
(
2–3
), pp.
174
185
.
23.
Shahbaztabar
,
A.
, and
Rahbar-Ranji
,
A.
,
2016
, “
Effects of In-Plane Loads on Free Vibration of Symmetrically Cross-Ply Laminated Plates Resting on Pasternak Foundation and Coupled With Fluid
,”
Ocean Eng.
,
115
, pp.
196
209
.
24.
Khorshidi
,
K.
, and
Bakhsheshy
,
A.
,
2015
, “
Free Vibration Analysis of a Functionally Graded Rectangular Plate in Contact With a Bounded Fluid
,”
Acta Mech.
,
226
(
10
), pp.
3401
3423
.
25.
Cho
,
D. S.
,
Kim
,
B. H.
,
Vladimir
,
N.
, and
Choi
,
T. M.
,
2015
, “
Natural Vibration Analysis of Rectangular Bottom Plate Structures in Contact With Fluid
,”
Ocean Eng.
,
103
, pp.
171
179
.
26.
Cho
,
D. S.
,
Kim
,
B. H.
,
Kim
,
J. H.
,
Vladimir
,
N.
, and
Choi
,
T. M.
,
2015
, “
Frequency Response of Rectangular Plate Structures in Contact With Fluid Subjected to Harmonic Point Excitation Force
,”
Thin-Walled Struct.
,
95
, pp.
276
286
.
27.
Cho
,
D. S.
,
Kim
,
B. H.
,
Vladimir
,
N.
, and
Choi
,
T. M.
,
2016
, “
Natural Vibration Analysis of Vertical Rectangular Plates and Stiffened Panels in Contact With Fluid on One Side
,”
Proc IMechE Part M
,
230
(
1
), pp.
114
125
.
28.
Ugurlu
,
B.
,
2016
, “
Boundary Element Method Based Vibration Analysis of Elastic Bottom Plates of Fluid Storage Tanks Resting on Pasternak Foundation
,”
Eng. Anal. Boundary Elem.
,
62
, pp.
163
176
.
29.
Jeong
,
K. H.
, and
Kang
,
H. S.
,
2013
, “
Free Vibration of Multiple Rectangular Plates Coupled With a Liquid
,”
Int. J. Mech. Sci.
,
74
, pp.
161
172
.
30.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Lo
,
S. H.
, and
Au
,
F. T. K.
,
2004
, “
Three-Dimensional Vibration Analysis of Rectangular Thick Plates on Pasternak Foundation
,”
Int. J. Numer. Methods Eng.
,
59
(
10
), pp.
1313
1334
.
You do not currently have access to this content.