With the application of innovative anchor concepts and advanced technologies in deepwater moorings, anchor behaviors in the seabed are becoming more complicated, such as 360 deg rotation of the anchor arm, gravity installation of anchors with high soil strain rate, and keying and diving (or penetration) of anchors. The anchor line connects the anchor and the anchor handling vessel (AHV) or floating moored platform. With moving of the AHV or platform, anchor line produces a space movement, and forms a reverse catenary shape and even a three-dimensional (3D) profile in the soil. Finite element analysis on the behaviors of anchor lines and deepwater anchors requires techniques that can deal with large strains and deformations of the soil, track changes in soil strength due to soil deformation, strain rate and strain softening effects, appropriately describe anchor–soil friction, and construct structures with connector elements to conform to their characteristics. This paper gives an overview of several key techniques in the coupled Eulerian–Lagrangian (CEL) analysis of comprehensive behaviors of deepwater anchors, including construction of the embedded anchor line and the anchor line in the water, installation of gravity installed anchors (GIAs), keying or diving of drag anchors, suction embedded plate anchors (SEPLAs) and GIAs, and implementation of the omni-directional arm of GIAs. Numerical probe tests and comparative studies are also presented to examine the robustness and accuracy of the proposed techniques. The aim of this paper is to provide an effective numerical framework to analyze the comprehensive behaviors of anchor lines and deepwater anchors.

References

References
1.
Shelton
,
J. T.
,
2007
, “
OMNI-Max™ Anchor Development and Technology
,”
OCEANS Conference
, Vancouver, BC, Canada, Sept. 29–Oct. 4, pp. 1989–1998.
2.
Randolph
,
M. F.
,
Gaudin
,
C.
,
Gourvenec
,
S. M.
,
White
,
D. J.
,
Boylan
,
N.
, and
Cassidy
,
M. J.
,
2011
, “
Recent Advances in Offshore Geotechnics for Deep Water Oil and Gas Developments
,”
Ocean Eng.
,
38
(
7
), pp.
818
834
.
3.
Hu
,
Y.
, and
Randolph
,
M. F.
,
1998
, “
A Practical Numerical Approach for Large Deformation Problems in Soils
,”
Int. J. Numer. Anal. Methods Geomech.
,
22
(
5
), pp.
327
350
.
4.
Yu
,
L.
,
Liu
,
J.
,
Kong
,
X. J.
, and
Hu
,
Y.
,
2008
, “
Three-Dimensional RITSS Large Displacement Finite Element Method for Penetration of Foundations Into Soil
,”
Comput. Geotech.
,
35
(
3
), pp.
372
382
.
5.
Wang
,
D.
,
Hu
,
Y.
, and
Randolph
,
M. F.
,
2010
, “
Three-Dimensional Large Deformation Analysis of Plate Anchors in Uniform Clay
,”
J. Geotech. Geoenviron. Eng.
,
136
(
2
), pp.
355
365
.
6.
Tian
,
Y. H.
,
Cassidy
,
M. J.
,
Randolph
,
M. F.
,
Wang
,
D.
, and
Gaudin
,
C.
,
2014
, “
A Simple Implementation of RITSS and Its Application in Large Deformation Analysis
,”
Comput. Geotech.
,
56
, pp.
160
167
.
7.
Wang
,
D.
,
Bienen
,
B.
,
Nazem
,
M.
,
Tian
,
Y. H.
,
Zheng
,
J. B.
,
Pucker
,
T.
, and
Randolph
,
M. F.
,
2015
, “
Large Deformation Finite Element Analyses in Geotechnical Engineering
,”
Comput. Geotech.
,
65
, pp.
104
114
.
8.
Randolph
,
M. F.
,
Wang
,
D.
,
Zhou
,
H.
, and
Hossain
,
M. S.
,
2008
, “
Large Deformation Finite Element Analysis for Offshore Applications
,”
12th International Conference of International Association for Computer Methods and Advances in Geomechanics
(
IACMAG
), Goa, India, Oct. 1–6, pp.
3307
3318
.
9.
Wang
,
D.
,
Randolph
,
M. F.
, and
White
,
D. J.
,
2013
, “
A Dynamic Large Deformation Finite Element Method Based on Mesh Regeneration
,”
Comput. Geotech.
,
54
, pp.
192
201
.
10.
Dassault Systemes
,
2010
, “
ABAQUS, Version 6.10 Documentation
,” Dassault Systemes, Paris, France.
11.
Qiu
,
G.
,
Henke
,
S.
, and
Grabe
,
J.
,
2011
, “
Application of a Coupled Eulerian-Lagrangian Approach on Geomechanical Problems Involving Large Deformations
,”
Comput. Geotech.
,
38
(
1
), pp.
30
39
.
12.
Tho
,
K. K.
,
Chen
,
Z.
,
Leung
,
C. F.
, and
Chow
,
Y. K.
,
2013
, “
Pullout Behaviour of Plate Anchor in Clay With Linearly Increasing Strength
,”
Can. Geotech. J.
,
51
(
1
), pp.
92
102
.
13.
Hu
,
P.
,
Wang
,
D.
,
Cassidy
,
M. J.
, and
Stanier
,
S. A.
,
2014
, “
Predicting the Resistance Profile of a Spudcan Penetrating Sand Overlying Clay
,”
Can. Geotech. J.
,
51
(
10
), pp.
1151
1164
.
14.
Liu
,
H. X.
,
Su
,
F. M.
, and
Li
,
Z.
,
2014
, “
The Criterion for Determining the Ultimate Pullout Capacity of Plate Anchors in Clay by Numerical Analysis
,”
Am. J. Eng. Appl. Sci.
,
7
(
4
), pp.
374
386
.
15.
Dutta
,
S.
,
Hawlader
,
B.
, and
Phillips
,
R.
,
2015
, “
Finite Element Modeling of Partially Embedded Pipelines in Clay Seabed Using Coupled Eulerian–Lagrangian Method
,”
Can. Geotech. J.
,
52
(
1
), pp.
58
72
.
16.
Kim
,
Y. H.
,
Hossain
,
M. S.
,
Wang
,
D.
, and
Randolph
,
M. F.
,
2015
, “
Numerical Investigation of Dynamic Installation of Torpedo Anchors in Clay
,”
Ocean Eng.
,
108
, pp.
820
832
.
17.
Zhao
,
Y. B.
, and
Liu
,
H. X.
,
2016
, “
Numerical Implementation of the Installation/Mooring Line and Application to Analyzing Comprehensive Anchor Behaviors
,”
Appl. Ocean Res.
,
54
, pp.
101
114
.
18.
Zhao
,
Y. B.
,
Liu
,
H. X.
, and
Li
,
P. D.
,
2016
, “
An Efficient Approach to Incorporate Anchor Line Effects Into the Coupled Eulerian–Lagrangian Analysis of Comprehensive Anchor Behaviors
,”
Appl. Ocean Res.
,
59
, pp.
201
215
.
19.
Liu
,
H. X.
, and
Zhao
,
Y. B.
,
2014
, “
Numerical Study of the Penetration Mechanism and Kinematic Behavior of Drag Anchors Using a Coupled Eulerian–Lagrangian Approach
,”
Geotech. Eng.
,
45
(
4
), pp.
29
39
.
20.
Benson
,
D. J.
,
1992
, “
Computational Methods in Lagrangian and Eulerian Hydrocodes
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2–3
), pp.
235
394
.
21.
Zhao
,
Y. B.
, and
Liu
,
H. X.
,
2013
, “
Large Deformation Finite Element Analysis of the Anchor Line Embedded in Seabed Soils
,”
ASME
Paper No. OMAE2013-10586.
22.
Neubecker
,
S. R.
, and
Randolph
,
M. F.
,
1995
, “
Profile and Frictional Capacity of Embedded Anchor Chains
,”
J. Geotech. Eng.
,
121
(
11
), pp.
797
803
.
23.
Liu
,
H. X.
,
Li
,
Y.
,
Yang
,
H. T.
,
Zhang
,
W.
, and
Liu
,
C. L.
,
2010
, “
Analytical Study on the Ultimate Embedment Depth of Drag Anchors
,”
Ocean Eng.
,
37
(14–15), pp.
1292
1306
.
24.
Zimmerman
,
E. H.
,
Smith
,
M. W.
, and
Shelton
,
J. T.
,
2009
, “
Efficient Gravity Installed Anchor for Deep Water Mooring
,”
41st Offshore Technology Conference
(OTC), Houston, TX, May 4-7,
SPE
Paper No. OTC-20117-MS.
25.
Wang
,
L. Z.
,
Guo
,
Z.
, and
Yuan
,
F.
,
2010
, “
Three-Dimensional Interaction Between Anchor Chain and Seabed
,”
Appl. Ocean Res.
,
32
(
4
), pp.
404
413
.
26.
Martins
,
M. A. L.
, and
Lages
,
E. N.
,
2014
, “
On the Formulation of Three-Dimensional Inverse Catenary for Embedded Mooring Line Modeling
,”
Comput. Model. Eng. Sci.
,
102
(
6
), pp.
449
474
.
27.
Ehlers
,
C. J.
,
Young
,
A. G.
, and
Chen
,
J.
,
2004
, “
Technology Assessment of Deepwater Anchors
,”
36th Offshore Technology Conference
(OTC), Houston, TX, May 3–6,
SPE
Paper No. OTC-16840-MS.
28.
O'Loughlin
,
C. D.
,
Richardson
,
M. D.
,
Randolph
,
M. F.
, and
Gaudin
,
C.
,
2013
, “
Penetration of Dynamically Installed Anchors in Clay
,”
Geotechnique
,
63
(
11
), pp.
909
919
.
29.
Liu
,
H. X.
,
Xu
,
K.
, and
Zhao
,
Y. B.
,
2016
, “
Numerical Investigation on the Penetration of Gravity Installed Anchors by a Coupled Eulerian–Lagrangian Approach
,”
Appl. Ocean Res.
,
60
, pp.
94
108
.
30.
Kim
,
Y. H.
, and
Hossain
,
M. S.
,
2015
, “
Dynamic Installation of OMNI-Max Anchors in Clay: Numerical Analysis
,”
Geotechnique
,
65
(
12
), pp.
1029
1037
.
31.
Medeiros
,
J. C. J.
,
2002
, “
Low Cost Anchor System for Flexible Risers in Deep Waters
,”
34th Offshore Technology Conference
(OTC), Houston, TX, May 6–9,
SPE
Paper No. OTC-14151-MS.
32.
Brandao
,
F. E. N.
,
Henriques
,
C. C. D.
,
Araujo
,
J. B.
,
Ferreira
,
O. C. G.
, and
Amaral
,
C.
,
2006
, “
Albacora Leste Field Development-FPSO P-50 Mooring System Concept and Installation
,”
38th Offshore Technology Conference
(OTC), Houston, TX, May 1–4,
SPE
Paper No. OTC-18243-MS.
33.
Murff
,
J. D.
,
Randolph
,
M. F.
,
Elkhatib
,
S.
,
Kolk
,
H. J.
,
Ruinen
,
R. M.
,
Strom
,
P. J.
, and
Thorne
,
C. P.
,
2005
, “
Vertically Loaded Plate Anchors for Deepwater Applications
,”
First International Symposium Frontiers in Offshore Geotechnics
(
FOG
), Perth, Australia, Sept. 19–21, pp.
31
48
.
34.
Song
,
Z. H.
,
Hu
,
Y.
,
O'Loughlin
,
C.
, and
Randolph
,
M. F.
,
2009
, “
Loss in Anchor Embedment During Anchor Keying in Clay
,”
J. Geotech. Geoenviron. Eng.
,
135
(
10
), pp.
1475
1485
.
35.
Wang
,
D.
,
Hu
,
Y.
, and
Randolph
,
M. F.
,
2011
, “
Keying of Rectangular Plate Anchors in Normally Consolidated Clays
,”
J. Geotech. Geoenviron. Eng.
,
137
(
12
), pp.
1244
1253
.
36.
Shelton
,
J. T.
,
Nie
,
C.
, and
Shuler
,
D.
,
2011
, “
Installation Penetration of Gravity Installed Plate Anchors-Laboratory Study Results and Field History Data
,”
43rd Offshore Technology Conference
(OTC), Rio de Janeiro, Brazil, Oct. 4–6,
SPE
Paper No. OTC-22502-MS.
You do not currently have access to this content.