This paper examines the applicability of the different surrogate-models (SMs) to predict the stress intensity factor (SIF) of a crack propagating in topside piping, as an inexpensive alternative to the finite element methods (FEM). Six different SMs, namely, multilinear regression (MLR), polynomial regression (PR) of order two, three, and four (with interaction), Gaussian process regression (GPR), neural networks (NN), relevance vector regression (RVR), and support vector regression (SVR) have been tested. Seventy data points (consisting of load (L), crack depth (a), half crack length (c) and SIF values obtained by FEM) are used to train the aforementioned SMs, while 30 data points are used for testing. In order to compare the accuracy of the SMs, four metrics, namely, root-mean-square error (RMSE), average absolute error (AAE), maximum absolute error (MAE), and coefficient of determination (R2) are used. A case study illustrating the comparison of the prediction capability of various SMs is presented. python and matlab are used to train and test the SMs. Although PR emerged as the best fit, GPR was selected as the best SM for SIF determination due to its capability of calculating the uncertainty related to the prediction values. The aforementioned uncertainty representation is quite valuable, as it is used to adaptively train the GPR model (GPRM), which further improves its prediction accuracy and makes it an accurate, faster, and alternative method to FEM for predicting SIF.

References

References
1.
Keprate
,
A.
, and
Ratnayake
,
R. M. C.
,
2017
, “
Enhancing Offshore Process Safety by Selecting Fatigue Critical Piping Locations for Inspection Using Fuzzy-AHP Based Approach
,”
Process Saf. Environ. Prot.
,
102
, pp.
71
84
.
2.
EI
,
2007
, “
Guidelines for the Avoidance of Vibration Induced Fatigue Failure in Process Pipework
,” The Energy Institute, London.
3.
EI
,
2013
, “
Guidelines for the Design, Installation and Management of Small Bore Tubing Assemblies
,” The Energy Institute, London.
4.
Keprate
,
A.
, and
Ratnayake
,
R. M. C.
,
2016
, “
Handling Uncertainty in the Remnant Fatigue Life Assessment of Offshore Process Pipework
,”
ASME
Paper No. IMECE2016-65504.
5.
Keprate
,
A.
,
Ratnayake
,
R. M. C.
, and
Sankararaman
,
S.
,
2017
, “
Minimizing Hydrocarbon Release From Offshore Piping by Performing Probabilistic Fatigue Life Assessment
,”
Process Saf. Environ.
,
106
, pp.
34
51
.
6.
Naess
,
A. A.
,
2009
,
Fatigue Handbook: Offshore Steel Structures
,
Tapir Publisher
,
Trondheim, Norway
, Chap. 3.
7.
DNV
,
2015
, “
Probabilistic Methods for Planning of Inspection for Fatigue Cracks in Offshore Structures
,” Det Norske Veritas AS, Høvik, Norway, Standard No.
DNV-RP-C210
.https://global.ihs.com/doc_detail.cfm?&csf=TIA&input_doc_number=&input_doc_title=&document_name=DNVGL-RP-0001&item_s_key=00651479&item_key_date=850131&origin=DSSC
8.
Antaki
,
G. A.
,
2003
,
Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair
,
CRC Press
,
Boca Raton, FL
, Chap. 7.
9.
Lassen
,
T.
, and
Recho
,
N.
,
2006
,
Fatigue Life Analyses of Welded Structures
,
ISTE
,
London
, Chap. 6.
10.
Tada
,
H. P.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1973
,
The Stress Analysis of Cracks Handbook
,
Del Research Corporation
,
Hellertown, PA
.
11.
Sih
,
G. C.
,
1973
,
Handbook of Stress Intensity Factors: Institute of Fracture and Solid Mechanics
,
Lehigh University
,
Bethlehem, PA
.
12.
Rooke
,
D. P.
, and
Cartwright
,
D. J.
,
1976
,
Compendium of Stress Intensity Factors
,
HMSO
,
London
.
13.
Miedlar
,
P. C.
,
Berens
,
A. P.
,
Gunderson
,
A.
, and
Gallagher
,
J. P.
,
2002
,
Handbook for Damage Tolerant Design
,
AFGROW, U.S. Air Force
,
Dayton, OH
, pp.
11.2.1
11.2.5
.
14.
More
,
S. T.
, and
Bindu
,
R. S.
,
2015
, “
Effect of Mesh Size on Finite Element Analysis of Plate Structure
,”
Int. J. Eng. Sci. Innovative Technol.
,
4
(
3
), pp.
181
185
.http://www.ijesit.com/Volume%204/Issue%203/IJESIT201503_24.pdf
15.
Chandresh
,
S.
,
2002
, “
Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions
,”
ANSYS Users Conference
, Pittsburgh, PA, Apr. 22–24, pp. 45–56.http://www.ansys.com/-/media/Ansys/corporate/resourcelibrary/conference-paper/2002-Int-ANSYS-Conf-9.PDF
16.
Deschrijver
,
D.
, and
Dhaene
,
T.
, 2012, “
Surrogate Modelling Lab
,” University of Ghent, Ghent, Belgium, accessed Mar. 3, 2017, http://www.sumo.intec.ugent.be/research
17.
Hombal
,
V. K.
, and
Mahadevan
,
S.
,
2013
, “
Surrogate Modelling of 3D Crack Growth
,”
Int. J. Fatigue
,
47
, pp.
90
99
.
18.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling
,
Wiley
,
Chichester, UK
, Chap. 1.
19.
Sankararaman
,
S.
,
Ling
,
Y.
,
Shantz
,
C.
, and
Mahadevan
,
S.
,
2011
, “
Uncertainty Quantification and Model Validation of Fatigue Crack Growth Prediction
,”
Eng. Fract. Mech.
,
78
(
7
), pp.
1487
1504
.
20.
Leser
,
P. E.
,
Hochhalter
,
J. D.
,
Warner
,
J. E.
,
Newman
,
J. A.
,
Leser
,
W. P.
,
Wawrzynek
,
P. A.
, and
Yuan
,
F. G.
,
2016
, “
Probabilistic Fatigue Damage Prognosis Using Surrogate Models Trained Via Three-Dimensional Finite Element Analysis
,”
Struct. Health Monit.
,
16
(
3
), pp.
291
308
.
21.
Yuvraj
,
P.
,
Murthy
,
A. R.
,
Iyer
,
N. R.
,
Samui
,
P.
, and
Sekar
,
S. K.
,
2014
, “
Prediction of Critical Stress Intensity Factor for High Strength and Ultra High Strength Concrete Beams Using Support Vector Regression
,”
J. Struct. Eng.
,
40
(
3
), pp.
224
233
.https://www.academia.edu/5142486/Prediction_of_critical_stress_intensity_factor_for_high_strength_and_ultra_high_strength_concrete_beams_using_support_vector_regression
22.
BS
,
2013
, “
Guide to Methods for Assessing Acceptability of Flaws in Metallic Structures
,” British Standards Institute, London, Standard No. BS 7910.
23.
API
,
2007
, “
Recommended Practice for Fitness-for-Service
,” API Publishing Services, Washington, DC, API Recommended Practice 579.
24.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing in a Plate
,”
ASME J. Appl. Mech.
,
24
(3), pp.
361
364
.
25.
Rooke
,
D. P.
,
Baratta
,
F. I.
, and
Cartwright
,
D. J.
,
1981
, “
Simple Methods of Determining Stress Intensity Factors
,”
Eng. Fract. Mech.
,
14
(
2
), pp.
397
426
.
26.
Ali
,
Z.
,
Meysam
,
K. E. S.
,
Iman
,
A.
,
Aydin
,
B.
, and
Yashar
,
B.
,
2014
, “
Finite Element Method Analysis of Stress Intensity Factor in Different Edge Crack Positions and Predicting Their Correlation Using Neural Network Method
,”
Res. J. Recent Sci.
,
3
(
2
), pp.
69
73
.http://www.isca.in/rjrs/archive/v3/i2/9.ISCA-RJRS-2013-411.pdf
27.
Sankararaman
,
S.
,
2012
, “
Uncertainty Quantification and Integration in Engineering Systems
,”
Ph.D. dissertation
, Vanderbilt University, Nashville, TN.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.3529&rep=rep1&type=pdf
28.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
, Chap. 12.
29.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip.
,
23
(
1
), pp.
1
13
.
30.
McFarland
,
J. M.
,
2008
, “
Uncertainty Analysis for Computer Simulations Through Validation and Calibration
,”
Ph.D. dissertation
, Vanderbilt University, Nashville, TN.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.7234&rep=rep1&type=pdf
31.
Maureen
,
C.
,
1987
, “
Neural Network Primer—Part I
,”
AI Expert
,
2
(
12
), pp.
46
52
.http://dl.acm.org/citation.cfm?id=38295&CFID=962199646&CFTOKEN=91644732
32.
Siffman
,
D.
,
2012
,
The Nature of Code
,
Self Published
,
Mountain View, CA
, Chap. 1.
33.
MathWorks, 1994, “
Deep Learning
,” The MathWorks, Inc., Natick, MA, accessed Mar. 14, 2017, https://www.mathworks.com/products/neural-network/features.html#deep-learning
34.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
35.
Gunn
,
S. R.
,
1998
, “
Support Vector Machines for Classification and Regression
,” University of Southampton, Southampton, UK, Technical Report No.
ISIS-1-98
.http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf
36.
Smola
,
A. J.
, and
Scholkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
37.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
38.
Ren
,
Q.
,
Zou
,
T.
,
Li
,
D.
,
Tang
,
D.
, and
Peng
,
Y.
,
2015
, “
Numerical Study on the X80 UOE Pipe Forming Process
,”
J. Mater. Process. Technol.
,
215
, pp.
264
277
.
39.
Newman
,
J. C.
, and
Raju
,
I. S.
,
1979
, “
Stress Intensity Factors for a Wide Range of Semi-Elliptical Surface Cracks in Finite Thickness Plates
,”
Eng. Fract. Mech.
,
11
(4), pp.
817
829
.
40.
ANSYS
, 2017, “
Product Data Sheet: ANSYS Student Data Sheet
,” ANSYS, Inc., Canonsburg, PA, accessed Mar. 14, 2017, http://www.ansys.com/Products/Academic/ANSYS-Student
41.
Keprate
,
A.
,
Ratnayake
,
R. M. C.
, and
Sankararaman
,
S.
,
2017
, “
Adaptive Gaussian Process Regression as an Alternative to FEM for Prediction of Stress Intensity Factor to Assess Fatigue Degradation in Offshore Piping
,”
Int. J. Pressure Vessels Piping
,
153
, pp.
45
58
.
You do not currently have access to this content.