Mechanical properties and corrosion resistance of UNS S32205 duplex stainless steel (DSS) welds obtained under the application of controlled magnetic fields were evaluated in the context of offshore pipelines and flowlines applications. Tensile tests, impact toughness, and hardness measurements were performed. Corrosion behavior was evaluated by linear polarization resistance (LPR) and potentiodynamic polarization curves (PCs) using a synthetic seawater solution at different temperatures. An improvement in tensile strength, impact toughness, and corrosion resistance was observed with the application of magnetic fields during welding. This effect is attributed to the refinement in the microstructure of the weld metal along with the suppression of detrimental intermetallic tertiary phases. Applying an axial magnetic field of 3 mT during DSS welding by the gas metal arc welding (GMAW) process is a potential technique for improving the performance of offshore pipeline welds and may be implemented in both, double-sided single pass and single-sided multipass butt joints.

References

1.
NACE
,
2013
, “
Use of Corrosion-Resistant Alloys in Oilfield Environments
,” NACE International, Houston, TX, Standard No.
NACE 1F192
.
2.
API
,
2015
, “
Use of Duplex Stainless Steel in the Oil Refining Industry
,” American Petroleum Institute, Washington, DC, Standard No.
API TR 938-C
.
3.
Alvarez
,
T.
,
Pavarino
,
M.
,
de Souza
,
G.
,
Pardal
,
J. M.
,
Tavares
,
S.
,
Ferreira
,
M. L.
, and
Filho
,
I.
,
2016
, “
Influence of Interpass Temperature on the Properties of Duplex Stainless Steel During Welding by Submerged Arc Welding Process
,”
Weld. Int.
,
30
(
5
), pp.
348
358
.
4.
Wickström
,
L.
,
Hinds
,
G.
, and
Turnbull
,
A.
,
2015
, “
Influence of Weld Preparation Procedure and Heat Tinting on Sulfide Stress Corrosion Cracking of Duplex Stainless Steel
,”
Corrosion
,
71
(
8
), pp.
1036
1047
.
5.
Saithala
,
J. R.
,
Mahajanam
,
S.
,
Ubhi
,
H. S.
, and
Atkinson
,
J.
,
2013
, “
Environmental-Assisted Cracking Behavior of Stigmatized Super Duplex Stainless Steel in Oilfield Production Brine
,”
Corrosion
,
69
(
3
), pp.
276
285
.
6.
ISO
,
2010
, “
Petroleum, Petrochemical and Natural Gas Industries—Materials Selection and Corrosion Control for Oil and Gas Production Systems
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 21457.
7.
Cao
,
L.
,
Anderki
,
A.
,
Gui
,
F.
, and
Sridhar
,
N.
,
2016
, “
Localized Corrosion of Corrosion Resistant Alloys in H2S-Containing Environments
,”
Corrosion
,
72
(
5
), pp.
636
654
.
8.
De Oliveira
,
I. P. G.
, and
Luz
,
T. D.
,
2013
, “
Study of the Manufacturing Process of UNS 32304 Flexible Pipes for the Oil and Gas Industry
,”
Soldag. Insp.
,
18
(
1
), pp.
2
11
.
9.
Bai
,
Q.
, and
Bai
,
Y.
,
2014
,
Subsea Pipeline Design, Analysis, and Installation
,
Elsevier
,
Waltham, MA
, Chap. 24.
10.
API
,
2015
, “
CRA Line Pipe
,” American Petroleum Institute, Washington, DC, Standard No.
G5LC04
.
11.
BS
,
2011
, “
Specification for Welding of Steel Pipelines on Land and Offshore—Part 2: Duplex Stainless Steel Pipelines
,” British Standards Institution, London, Standard No.
BS 4515-2
.
12.
DNV
,
2013
, “
Submarine Pipeline Systems
,” Det Norske Veritas, Oslo, Norway, Standard No.
DNV OS-F101
.
13.
Alvarez-Armas
,
I.
, and
Moreuil
,
S. D.
,
2009
,
Duplex Stainless Steel
,
Wiley
,
London
, Chap. 3.
14.
Karlsson
,
L.
,
2012
, “
Welding Duplex Stainless Steels—A Review of Current Recommendations
,”
Weld. World
,
56
(
5
), pp.
65
76
.
15.
Gideon
,
B.
,
Ward
,
L.
, and
Biddle
,
G.
,
2008
, “
Duplex Stainless Steel Welds and Their Susceptibility to Intergranular Corrosion
,”
J. Miner. Mater. Charact. Eng.
,
7
(
3
), pp.
247
263
.
16.
Ha
,
H. Y.
,
Jang
,
M. H.
,
Lee
,
T. H.
, and
Moon
,
J.
,
2014
, “
Interpretation of the Relation Between Ferrite Fraction and Pitting Corrosion Resistance of Commercial 2205 Duplex Stainless Steel
,”
Corros. Sci.
,
89
, pp.
154
162
.
17.
Kang
,
D. H.
, and
Lee
,
H. W.
,
2013
, “
Study of the Correlation Between Pitting Corrosion and the Component Ratio of the Dual Phase in Duplex Stainless Steel Welds
,”
Corros. Sci.
,
74
, pp.
396
407
.
18.
Malinowski
,
M.
,
Denouden
,
G.
, and
Vink
,
W.
,
1990
, “
Effect of Electromagnetic Stirring on GTA Welds in Austenitic Stainless-Steel
,”
Weld. J.
,
69
(
2
), pp.
S52
S59
.
19.
Villafuerte
,
J.
, and
Kerr
,
H.
,
1990
, “
Electromagnetic Stirring and Grain-Refinement in Stainless Steel GTA Welds
,”
Weld. J.
,
69
(
1
), pp.
S1
S13
.
20.
Curiel
,
F. F.
,
García
,
R.
,
López
,
V. H.
, and
González-Sánchez
,
J.
,
2011
, “
Effect of Magnetic Field Applied During Gas Metal Arc Welding on the Resistance to Localized Corrosion of the Heat Affected Zone in AISI 304 Stainless Steel
,”
Corros. Sci.
,
53
(
7
), pp.
2393
2399
.
21.
Curiel
,
F. F.
,
García
,
R.
,
López
,
V. H.
,
García
,
M. A.
, and
Lemus
,
J.
,
2013
, “
Transmission Electron Microscopy in the Heat Affected Zone of an AISI 304 Austenitic Stainless Steel Welded With the Application of a Magnetic Field of Low Intensity
,”
Mater. Trans.
,
54
(
1
), pp.
122
125
.
22.
Matsuda
,
F.
,
Nakagawa
,
H.
,
Nakata
,
K.
, and
Ayani
,
R.
,
1978
, “
Effect of Electromagnetic Stirring on Weld Solidification Structure of Aluminum Alloys (Report I)—Investigation on GTA Weld Metal of Thin Sheet
,”
Trans. JWRI
,
7
(
1
), pp.
111
127
.
23.
García
,
M. A.
,
López
,
V. H.
,
García
,
R.
,
Curiel
,
F. F.
, and
Ambriz
,
R. R.
,
2010
, “
Preliminary Assessment of the Effects of the Application of an Axial Magnetic Field During GMA Welding of Al-6063-T62
,”
MRS Online Proc. Libr.
,
1275
, pp.
S3
S21
.
24.
Garcia
,
R.
,
López
,
V. H.
,
Lázaro
,
Y.
, and
Aguilera
,
J.
,
2007
, “
Grain Refinement in Electrogas Welding of Microalloyed Steels by Inducing a Centered Magnetic Field
,”
Soldag. Insp.
,
12
(4), pp.
300
304
.
25.
Sivaprasad
,
K.
, and
Raman
,
S. G.
,
2007
, “
Influence of Magnetic Arc Oscillation and Current Pulsing on Fatigue Behavior of Alloy 718 TIG Weldments
,”
Mater. Sci. Eng. A
,
448
(
1–2
), pp.
120
127
.
26.
McCracken
,
S.
,
Yu
,
X.
,
Lim
,
Y. C.
,
Farson
,
D. F.
, and
Babu
,
S. S.
,
2011
, “
Grain Structure Refinement in Nickel Alloy Welds by Magnetic Arc Stirring
,” ASME Paper No.
PVP2011-57681
.
27.
García-Rentería
,
M. A.
,
López
,
V. H.
,
García
,
R.
,
Curiel
,
F.
, and
Lemus
,
J.
,
2013
, “
Effect on the Microstructure and Mechanical Properties of the Electromagnetic Stirring During GMA Welding of 2205 DSS Plates
,”
Mater. Sci. Forum
,
755
, pp.
61
68
.
28.
García-Rentería
,
M. A.
,
López-Morelos
,
V. H.
,
García-Hernández
,
R.
,
Dzib-Pérez
,
L.
,
García-Ochoa
,
E. M.
, and
González-Sánchez
,
J.
,
2014
, “
Improvement of Localized Corrosion Resistance of AISI 2205 Duplex Stainless Steel Joints Made by Gas Metal Arc Welding Under Electromagnetic Interaction of Low Intensity
,”
Appl. Surf. Sci.
,
321
, pp.
252
260
.
29.
AWS
,
2012
, “
Specification for Bare Stainless Steel Welding Electrodes and Rods
,” 8th ed., American Welding Society, Miami, FL, Standard No.
AWS A5.9/A5.9M
.
30.
ASTM
,
2013
, “
Standard Test Methods for Tension Testing of Metallic Materials
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E8/E8M
.
31.
ASTM
,
2013
, “
Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E23 Rev C
.
32.
ASTM
,
2013
, “
Standard Practice for the Preparation of Substitute Ocean Water
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM 1141
.
33.
Muthupandi
,
V.
,
Srinivasa
,
P. B.
,
Seshadri
,
S. K.
, and
Sundaresan
,
S.
,
2003
, “
Corrosion Behaviour of Duplex Stainless Steel Weld Metals With Nitrogen Additions
,”
Corros. Eng. Sci. Technol.
,
38
(
4
), pp.
303
308
.
34.
McGuire
,
M. F.
,
2008
,
Stainless Steels for Design Engineers
,
ASM International
, Novelty,
OH
, Chap. 7.
35.
Kuroda
,
T.
,
Ikeuchi
,
K.
, and
Kitagawa
,
Y.
,
2005
, “
Role of Austenite in Weld Toughness of Super Duplex Stainless Steel
,”
Weld. World
,
49
(
5
), pp.
29
33
.
36.
Topolska
,
S.
, and
Łabanowski
,
J.
,
2009
, “
Effect of Microstructure on Impact Toughness of Duplex and Super-Duplex Stainless Steels
,”
J. Achiev. Mater. Manuf. Eng.
,
36
(
2
), pp.
142
149
.
37.
Zucato
,
I.
,
Moreira
,
M. C.
,
Machado
,
I. F.
, and
Giampietri
,
S. M.
,
2002
, “
Microstructural Characterization and the Effect of the Phase Transformations on Toughness of the UNS S31803 Duplex Stainless Steel Aged Treated at 850 °C
,”
Mater. Res.
,
5
(
3
), pp.
385
389
.
38.
Muthupandi
,
V.
,
Srinivasan
,
P. B.
,
Seshadri
,
S. K.
, and
Sundaresan
,
S.
,
2003
, “
Effect of Weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steel Welds
,”
Mater. Sci. Eng. A
,
358
(
1–2
), pp.
9
16
.
39.
Young
,
M. C.
,
Chan
,
S. L. I.
,
Tsay
,
L. W.
, and
Shin
,
C. S.
,
2005
, “
Hydrogen-Enhanced Cracking of 2205 Duplex Stainless Steel Welds
,”
Mater. Chem. Phys.
,
91
(
1
), pp.
21
27
.
40.
Nakade
,
K.
,
2003
, “
Sigma Phase Precipitation and Its Influence on Hydrogen Induced Cracking of Duplex Stainless Steel Base Metal and Weld Metal
,”
Weld. World
,
47
(
9
), pp.
9
20
.
41.
Trejo-Atecas
,
B.
,
Orozco-Cruz
,
R.
,
Contreras
,
A.
, and
Galván-Martínez
,
R.
,
2014
, “
Electrochemical Characterization of X60 Steel Corrosion at Different Overvoltages: A Cathodic Protection Studies
,”
Mater. Sci. Forum
,
793
, pp.
59
66
.
42.
Roberge
,
P. R.
,
2000
,
Handbook of Corrosion Engineering
,
McGraw-Hill
,
New York
, Chap. 1.
You do not currently have access to this content.