Torpedo piles installed by dynamic penetration have been used as anchors in the Brazilian offshore oil production infrastructure practice for two decades. Dynamic penetration aided by fluidization of the soil during pile penetration is now being contemplated as a method of installation that would allow deeper penetration. The two key design questions in connection with torpedo piles are how far they penetrate and what their pullout capacity is. In a companion paper, the authors addressed the first question, whereas in the present one the second question is attended through laboratory tests using model piles, essentially pipes simulating torpedo piles without wings. The model piles were installed in two different ways: by fluidization, which enabled the piles to sink by their own weight, and by monotonic jacking. Pullout tests were then performed on the model piles in both fluidized and nonfluidized sandy soils prepared at two initial relative densities. Results from the laboratory tests indicate that shaft uplift capacity of fluidized piles is essentially independent of the sand initial relative density. The measured values of the coefficient of lateral earth pressure (Ks) derived from the fluidized model tests are lower than those reported for other methods of pile installation, in some cases being lower than K0. Finally, the shaft resistance of fluidized piles increases after installation as the soil reconsolidates and particles rearrange.

References

1.
Medeiros
,
C. J.
, Jr.
,
2002
, “
Low Cost Anchor System for Flexible Risers in Deep Waters
,”
34th Offshore Technology Conference
(
OTC
), Houston, TX, May 6–9, Paper No. OTC 14151.
2.
de Araujo
,
J. D. B.
,
Machado
,
R. D.
, and
de Medeiros
,
C. J.
, Jr.
,
2004
, “
High Holding Power Torpedo Pile—Results for the First Long Term Application
,”
23rd International Conference on Offshore Mechanics and Arctic Engineering
(
OMAE
), Vancouver, Canada, June 20–25, pp.
417
421
.
3.
Fernandes
,
A. C.
,
de Araujo
,
J. B.
,
de Almeida
,
J. C. L.
,
Machado
,
R. D.
, and
Matos
,
V.
,
2006
, “
Torpedo Anchor Installation Hydrodynamics
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(
4
), pp.
286
293
.
4.
Amaral
,
C. S.
,
2008
, “
The Marine Geotechnical Engineering Applied at the Offshore Oil and Gas Industry in Brazil
,”
14th Brazilian Congress of Soil Mechanics and Geotechnical Engineering (COBRAMSEG)
, Búzios, Brazil, Aug. 23–26, pp.
62
74
(in Portuguese).
5.
Henriques
,
P. R. D.
, Jr.
,
Foppa
,
D.
,
Porto
,
E. C.
, and
Medeiros
,
C. J.
, Jr.
,
2010
, “
Alternative Torpedo Anchor for Heavy Loads Anchorage
,”
15th Brazilian Congress of Soil Mechanics and Geotechnical Engineering (COBRAMSEG)
, Gramado, Brazil, Aug. 17–22, pp.
1
8
(in Portuguese).
6.
de Sousa
,
J. R. M.
,
de Aguiar
,
C. S.
,
Ellwanger
,
G. B.
,
Porto
,
E. C.
,
Foppa
,
D.
, and
de Medeiros
,
C. J.
, Jr
.,
2011
, “
Undrained Load Capacity of Torpedo Anchors Embedded in Cohesive Soils
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
2
), p.
021102
.
7.
Leva
,
M.
,
1959
,
Fluidization
,
McGraw-Hill
,
New York
, Chap. 1.
8.
Westrich
,
B.
, and
Kokus
,
H.
,
1973
, “
Erosion of a Uniform Sand Bed by Continuous and Pulsating Jets
,”
International Association of Hydraulic Research Congress
, Istambul, Turkey, Vol.
1
, pp.
1
3
.
9.
Rajaratnam
,
N.
, and
Beltaos
,
S.
,
1977
, “
Erosion by Impinging Circular Turbulent Jets
,”
ASCE J. Hydraul. Div.
,
103
(
10
), pp.
1191
1205
.
10.
Kobus
,
H.
,
Leister
,
P.
, and
Westrich
,
B.
,
1979
, “
Flow Field and Scouring Effects of Steady and Pulsating Jets Impinging on a Movable Bed
,”
J. Hydraul. Res.
,
17
(
3
), pp.
175
192
.
11.
Rajaratnam
,
N.
,
1982
, “
Erosion by Submerged Circular Jets
,”
ASCE J. Hydraul. Div.
,
108
(
HY2
), pp.
262
267
.
12.
Aderibigbe
,
O. O.
, and
Rajaratnam
,
N.
,
1996
, “
Erosion of Loose Beds by Submerged Circular Impinging Turbulent Jets
,”
J. Hydraul. Res.
,
34
(
1
), pp.
19
33
.
13.
Weisman
,
R. N.
, and
Lennon
,
G. P.
,
1994
, “
Design of Fluidizer Systems for Coastal Environment
,”
ASCE J. Waterway Port Coastal Ocean Div.
,
120
(
5
), pp.
468
487
.
14.
Weisman
,
R. N.
, and
Lennon
,
G. P.
,
1996
, “
A Guide to the Planning and Hydraulic Design of Fluidizer Systems for Sand Management in the Coastal Environment
,” Dredging Research Program, U.S. Army Corps of Engineers, Bethlehem, PA, Report No.
DRP-96-3
.
15.
Khalili
,
N.
, and
Niven
,
R. K.
,
1996
, “
Upflow Washing: A New In Situ Technology for Organic and Metal Remediation
,”
Third International Symposium on Environmental Geotechnology
, Technomic Publishing, San Diego, CA, June 9–12, Vol.
1
, pp.
745
754
.
16.
Niven
,
R. K.
,
1998
, “
In Situ Multiphase Fluidisation (‘Upflow Washing’) for the Remediation of Diesel and Lead Contaminated Soils
,”
Ph.D. thesis
, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW.
17.
Tsinker
,
G. P.
,
1988
, “
Pile Jetting
,”
ASCE J. Geotech. Eng.
,
114
(
3
), pp.
326
334
.
18.
Gunaratne
,
M.
,
Hameed
,
R. A.
,
Kuo
,
C.
,
Putcha
,
S.
, and
Reddy
,
D. V.
,
1999
, “
Investigation of the Effects of Pile Jetting and Preforming
,”
Florida Department of Transportation in Cooperation With Federal Highway Administration
, University of South Florida, Tampa, FL, Report No. 772.
19.
Xu
,
G. H.
,
Yue
,
Z. Q.
,
Liu
,
D. F.
, and
He
,
F. R.
,
2006
, “
Grouted Jetted Precast Concrete Sheet Piles: Method, Experiments, and Applications
,”
Can. Geotech. J.
,
43
(
12
), pp.
1358
1373
.
20.
Zeilinger
,
H. M.
,
2009
, “
The Vibro-Jetting Driving Method
,”
International Foundation Congress and Equipment Expo—ASCE Contemporary Topics in Deep Foundations
, Orlando, FL, Mar. 15–19, pp.
311
318
.
21.
Bhasi
,
A.
,
Rajagopal
,
K.
, and
Reddy
,
D. V.
,
2010
, “
Finite Element Study of the Influence of Pile Jetting on Load Capacity of Adjacent Piles
,”
Int. J. Geotech. Eng.
,
4
(
3
), pp.
361
370
.
22.
Vesic
,
A. S.
,
1967
, “
A Study of Bearing Capacity of Deep Foundations
,” School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA, Final Report Project B-189.
23.
Vesic
,
A. S.
,
1970
, “
Tests on Instrumented Piles
,”
ASCE J. Soil Mech. Found. Div.
,
96
(
SM2
), pp.
561
584
.
24.
Sowa
,
V. A.
,
1970
, “
Pulling Capacity of Concrete Cast In Situ Bored Piles
,”
Can. Geotech. J.
,
7
(
4
), pp.
482
493
.
25.
Meyerhof
,
G. G.
,
1973
, “
Uplift Resistance of Inclined Anchors and Piles
,”
Eighth International Conference on Soil Mechanics and Foundation Engineering
, Moscow, Russia, Aug. 6–11, Vol.
2
, pp.
167
172
.
26.
Das
,
B. M.
, and
Seeley
,
G. R.
,
1975
, “
Uplift Capacity of Buried Model Piles in Sand
,”
ASCE J. Geotech. Eng. Div.
,
101
(
10
), pp.
1091
1094
.
27.
Das
,
B. M.
,
Seeley
,
G. R.
, and
Pfeile
,
T. W.
,
1977
, “
Pull Out Resistance of Rough Rigid Piles in Granular Soils
,”
Soils Found.
,
17
(
3
), pp.
72
77
.
28.
Das
,
B. M.
,
Smith
,
E. J.
, and
Seeley
,
G. R.
,
1976
, “
Uplift Capacity of Group Piles in Sand
,”
ASCE J. Geotech. Eng. Div.
,
102
(
3
), pp.
282
286
.
29.
Das
,
B. M.
,
1983
, “
A Procedure for Estimation of Uplift Capacity of Rough Piles
,”
Soils Found.
,
23
(
3
), pp.
122
126
.
30.
Levacher
,
D. R.
, and
Sieffert
,
J. G.
,
1984
, “
Tests on Model Tension Piles
,”
ASCE J. Geotech. Eng. Div.
,
110
(
12
), pp.
1735
1748
.
31.
Rao
,
K. S. S.
, and
Venkatesh
,
K. H.
,
1985
, “
Uplift Behavior of Short Piles in Uniform Sand
,”
Soils Found.
,
25
(
4
), pp.
1
7
.
32.
Chattopadhyay
,
B. C.
, and
Pise
,
P. J.
,
1986
, “
Uplift Capacity of Piles in Sand
,”
ASCE J. Geotech. Eng.
,
112
(
9
), pp.
888
904
.
33.
Alawneh
,
A. S.
,
Malkawi
,
A. I. H.
, and
Al-Deeky
,
H.
,
1999
, “
Tension Tests on Smooth and Rough Model Piles in Dry Sand
,”
Can. Geotech. J.
,
36
(
4
), pp.
746
753
.
34.
Gavin
,
K. G.
, and
Lehane
,
B. M.
,
2003
, “
The Shaft Capacity of Pipe Piles in Sand
,”
Can. Geotech. J.
,
40
(
1
), pp.
36
45
.
35.
Shanker
,
K.
,
Basudhar
,
P. K.
, and
Patra
,
N. R.
,
2007
, “
Uplift Capacity of Single Piles: Predictions and Performance
,”
Geotech. Geol. Eng.
,
25
(
2
), pp.
151
161
.
36.
Loukidis
,
D.
, and
Salgado
,
R.
,
2008
, “
Analysis of the Shaft Resistance of Non-Displacement Piles in Sand
,”
Geotechnique
,
58
(
4
), pp.
283
296
.
37.
Basu
,
D.
, and
Salgado
,
R.
,
2012
, “
Load and Resistance Factor Design of Drilled Shafts in Sand
,”
ASCE J. Geotech. Geoenviron. Eng.
,
138
(
12
), pp.
1455
1469
.
38.
Mezzomo
,
S. M.
,
2009
, “
Study of Fluidization Using Water Jets in Sand
,” M.Sc. thesis, Graduation Program in Civil Engineering, Federal University of Rio Grande do Sul, Porto Algre, Brazil (in Portuguese).
39.
Stracke
,
F.
,
2012
, “
Fluidization of Sand Associated to Injection of Cement Agent for Applying in Offshore Structures
,” M.Sc. thesis, Graduation Program in Civil Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (in Portuguese).
40.
Passini
,
L. B.
,
2015
, “
Installation and Axial Load Capacity of Fluidized Model Piles in Sandy Soils
,” D.Sc. thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (in Portuguese).
41.
Silva dos Santos
,
A. P. S.
,
Consoli
,
N. C.
, and
Baudet
,
B.
,
2010
, “
The Mechanics of Fibre-Reinforced Sand
,”
Geotechnique
,
60
(
10
), pp.
791
799
.
42.
Fioravante
,
V.
,
2002
, “
On the Shaft Friction Modelling of Non-Displacement Piles in Sand
,”
Soils Found.
,
42
(
2
), pp.
23
33
.
43.
Patra
,
N. R.
, and
Pise
,
P. J.
,
2003
, “
Uplift Capacity of Pile Group in Sand
,”
Electron. J. Geotech. Eng.
,
8B
.
44.
Paik
,
K.
, and
Salgado
,
R.
,
2003
, “
Determination of Bearing Capacity of Open-Ended Piles in Sand
,”
ASCE J. Geotech. Geoenviron. Eng.
,
129
(
1
), pp.
46
57
.
45.
White
,
D. J.
, and
Lehane
,
B. M.
,
2004
, “
Friction Fatigue on Displacement Piles in Sand
,”
Geotechnique
,
54
(
10
), pp.
645
658
.
46.
O'Loughlin
,
C. D.
,
Randolph
,
M. F.
, and
Richardson
,
M.
,
2004
, “
Experimental and Theoretical Studies of Deep Penetrating Anchors
,”
Offshore Technology Conference
(
OTC
), Houston, TX, May 3–6, Paper No. OTC 16841.
47.
Shanker
,
K.
,
2006
, “
Some Studies on the Behaviour of Single and Group of Piles
,” Ph.D. thesis, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, India.
48.
Kumar
,
J.
, and
Bhoi
,
M. K.
,
2009
, “
Vertical Uplift Capacity of Equally Spaced Multiple Strip Anchors in Sand
,”
Geotech. Geol. Eng.
,
27
(
3
), pp.
461
472
.
49.
Gilbert
,
R. B.
,
Movant
,
M.
, and
Audibert
,
J.
,
2008
, “
Torpedo Piles Joint Industry Project—Model Torpedo Pile Tests in Kaolinite Test Beds
,” Minerals Management Service, The University of Texas at Austin, Austin, TX, EUA, Final Project Report No.
575
.
50.
Brum
,
S. A.
, Jr.
,
2009
, “
Centrifugation Assay to Evaluate the Performance of Dynamic Cone Penetrometer for Anchoring Structures Offshore
,” M.Sc. thesis, Graduation Program in Civil Engineering, State University of Norte Fluminense Darcy Ribeiro, Campos de Goytacazes, Brazil (in Portuguese).
51.
Yang
,
Z. X.
,
Jardine
,
R. J.
,
Zhu
,
B. T.
,
Foray
,
P.
, and
Tsuha
,
C. H. C.
,
2010
, “
Sand Grain Crushing and Interface Shearing During Displacement Pile Installation in Sand
,”
Geotechnique
,
60
(
6
), pp.
469
482
.
52.
Lehane
,
B. M.
,
Gaudin
,
C.
, and
Schneider
,
J. A.
,
2005
, “
Scale Effects on Tension Capacity for Rough Piles Buried in Dense Sand
,”
Geotechnique
,
55
(
10
), pp.
709
719
.
53.
Lehane
,
B. M.
,
Schneider
,
J. A.
,
Lim
,
J. K.
, and
Mortara
,
G.
,
2012
, “
Shaft Friction From Instrumented Displacement Piles in an Uncemented Calcareous Sand
,”
ASCE J. Geotech. Geoenviron. Eng.
,
138
(
11
), pp.
1357
1368
.
54.
Lim
,
J. K.
, and
Lehane
,
B. M.
,
2014
, “
Set-Up of Pile Shaft Friction in Laboratory Chamber Tests
,”
Int. J. Phys. Modell. Geotech.
,
14
(
2
), pp.
21
30
.
55.
Arshad
,
M. I.
,
Tehrani
,
F. S.
,
Prezzi
,
M.
, and
Salgado
,
R.
,
2014
, “
Experimental Study of Cone Penetration in Silica Sand Using Digital Image Correlation
,”
Geotechnique
,
64
(
7
), pp.
551
569
.
56.
Munson
,
B. R.
,
Young
,
D. F.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2009
,
Fundamentals of Fluid Mechanics
, 6th ed.,
Wiley
,
New York
, Chap. 7.
57.
Fox
,
R. W.
, and
McDonald
,
A. T.
,
1976
,
Introduction to Fluid Mechanics
, 4th ed.,
Wiley
,
New York
, Chap. 4.
58.
Carneiro
,
F. L.
,
1993
,
Dimensional Analysis and Theory of Similarity and Physical Models
,
UFRJ
,
Rio de Janeiro, Brazil
, Chap. 9 (in Portuguese).
59.
Hirata
,
M. H.
,
2012
, “
Dimensional Analysis and Similarity Laws
,”
Non-Commercial Book
, São Paulo, Brazil, Chap. 8 (in Portuguese).
60.
Chadwick
,
A.
,
Morfett
,
J.
, and
Borthwick
,
M.
,
2004
,
Hydraulics in Civil and Environmental Engineering
, 4th ed.,
Taylor & Francis
,
London, UK
, Chap. 11.
61.
Schnaid
,
F.
, and
Yu
,
H. S.
,
2007
, “
Interpretation of the Seismic Cone Test in Granular Soils
,”
Geotechnique
,
57
(
3
), pp.
265
272
.
62.
Melo
,
C. M. A. R.
,
Tibana
,
S.
,
Saboya
,
F. A.
, Jr.
,
Reis
,
R. M.
,
Rubens Ramires
,
R. S.
, and
Brum
,
S. A.
, Jr.
,
2010
, “
Physical Modeling of Suction Piles
,”
15th Brazilian Congress of Soil Mechanics and Geotechnical Engineering (COBRAMSEG)
, Gramado, Brazil, Aug. 17–22, pp.
1
8
(in Portuguese).
63.
Kunitaki
,
D. M. K. N.
,
2006
, “
Uncertainty Treatment in the Dynamic Behavior of Torpedo Pile of Floating Systems Anchoring in Offshore Petroleum Exploitation
,” M.Sc. thesis, Graduation Program in Civil Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (in Portuguese).
64.
Costa
,
R. G. B.
,
2008
, “
Parametric Analysis of the Conditions for Anchoring Offshore Platforms Using Torpedo Pile From Finite Element Models
,” M.Sc. thesis, Graduation Program in Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (in Portuguese).
65.
Silva
,
U. A.
,
Galgoul
,
N. S.
, and
Medeiros
,
C. J.
, Jr
.,
2008
, “
Dynamic Analysis of Torpedo Piles
,”
14th Brazilian Congress of Soil Mechanics and Geotechnical Engineering (COBRAMSEG)
, Búzios, Brazil, Aug. 23–26, pp.
634
639
(in Portuguese).
66.
Bruno
,
D.
, and
Randolph
,
M. F.
,
1999
, “
Dynamic and Static Load Testing of Model Piles Driven Into Dense Sand
,”
ASCE J. Geotech. Geoenviron. Eng.
,
125
(
11
), pp.
988
998
.
67.
Ladd
,
R. S.
,
1978
, “
Preparing Test Specimens Using Undercompaction
,”
Geotech. Test. J.
,
1
(
1
), pp.
16
23
.
68.
Shelke
,
A.
, and
Mishra
,
S.
,
2010
, “
Uplift Capacity of Single Bent Pile and Pile Group Considering Arching Effects in Sand
,”
Geotech. Geol. Eng.
,
28
(
4
), pp.
337
347
.
69.
Passini
,
L. B.
, and
Schnaid
,
F.
,
2015
, “
Experimental Investigation of Pile Installation by Vertical Jet Fluidization in Sand
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
4
), p.
042002
.
70.
Schnaid
,
F.
,
Passini
,
L. B.
,
Stracke
,
F.
, and
Mezzomo
,
S.
,
2014
, “
On the Response of Fluidized Piles From Laboratory Model Tests in Granular Soils
,”
J. Geo-Eng. Sci.
,
1
(2), pp.
69
81
.
71.
Salgado
,
R.
,
2005
, “
Analysis of the Axial Response of Non-Displacement Piles in Sand
,”
Second Japan–U.S. Workshop on Testing, Modeling, and Simulation in Geomechanics
, Kyoto, Japan, Sept. 8–10, pp.
427
439
.
72.
Basu
,
P.
,
Loukidis
,
D.
,
Prezzi
,
M.
, and
Salgado
,
R.
,
2011
, “
Analysis of Shaft Resistance of Jacked Piles in Sands
,”
Int. J. Numer. Anal. Methods Geomech.
,
35
(
15
), pp.
1605
1635
.
73.
Meyerhof
,
G. G.
,
1956
, “
Penetration Tests and Bearing Capacity of Cohesionless Soils
,”
ASCE J. Soil Mech. Found. Div.
,
82
(
SM1
), pp.
1
19
.
74.
Broms
,
B. B.
,
1964
, “
Lateral Resistance of Piles in Cohesionless Soils
,”
J. Soil Mech. Found. Eng.
,
90
(
3
), pp.
123
156
.
75.
Peck
,
R. B.
,
Hanson
,
W. E.
, and
Thorburn
,
T. H.
,
1974
,
Foundation Engineering
, 2nd ed.,
Wiley
,
New York
, Chap. 12.
76.
Peck, R. B., Hanson, W. E., and Thorburn, T. H., 1974, Foundation Engineering, 2nd ed., Wiley, New York, Chap. 19.
77.
Poulos
,
H. G.
,
1989
, “
Pile Behaviour—Theory and Application
,”
Geotechnique
,
39
(
3
), pp.
365
415
.
78.
Kraft
,
L. M.
, Jr.
,
1991
, “
Performance of Axially Loaded Pipe Piles in Sand
,”
ASCE J. Geotech. Eng.
,
117
(
2
), pp.
272
296
.
79.
Salgado
,
R.
,
2008
,
The Engineering of Foundations
, 1st ed.,
McGraw-Hill
,
New York
, Chap. 13.
80.
Lehane
,
B. M.
,
Jardine
,
R. J.
,
Bond
,
A. J.
, and
Frank
,
R.
,
1993
, “
Mechanisms of Shaft Friction in Sand From Instrumented Pile Tests
,”
ASCE J. Geotech. Eng.
,
119
(
1
), pp.
19
35
.
81.
Jardine
,
R. J.
, and
Chow
,
F. C.
,
1996
, “
New Design Methods for Offshore Piles
,” Marine Technology Directorate (MTD), Center for Petroleum and Marine Technology (CPMT), London, UK, Publication No. 96/103.
82.
Jardine
,
R. J.
,
Everton
,
S. J.
, and
Lehane
,
B. M.
,
1993
, “
Friction Coefficients for Piles in Sands and Silts
,”
Offshore Site Investigation and Foundation Behaviour
, Kluwer Academic Publishers, Dordrecht, The Netherlands, Sept. 22–24, pp.
661
677
.
83.
Jardine
,
R. J.
,
Overy
,
R. F.
, and
Chow
,
F. C.
,
1998
, “
Axial Capacity of Offshore Piles in Dense North Sea Sands
,”
ASCE J. Geotech. Geoenviron. Eng.
,
124
(
2
), pp.
171
178
.
84.
Kulhawy
,
F. H.
,
Trautmann
,
C. H.
,
Beech
,
J. F.
,
O'Rourke
,
T. D.
,
McGuire
,
W.
,
Wood
,
W. A.
, and
Capano
,
C.
,
1983
, “
Transmission Line Structure Foundations for Uplift-Compression Loading
,” Electric Power Research Institute, Palo Alto, CA, Report No.
EL-2870
.
85.
Colombi
,
A.
,
2005
, “
Physical Modelling of an Isolated Pile in Coarse Grained Soil
,” Ph.D. thesis, University of Ferrara, Ferrara, Italy.
86.
Kishida
,
H.
, and
Uesugi
,
M.
,
1987
, “
Tests of the Interface Between Sand and Steel in the Simple Shear Apparatus
,”
Geotechnique
,
37
(
1
), pp.
45
52
.
87.
Potts
,
D. M.
, and
Martins
,
J. P.
,
1982
, “
The Shaft Resistance of Axially Loaded Piles in Clay
,”
Geotechnique
,
32
(
4
), pp.
369
386
.
88.
Alawneh
,
A. S.
,
Nusier
,
O. K.
, and
Al-Kateeb
,
M.
,
2003
, “
Dependency of Unit Shaft Resistance on In-Situ Stress: Observations Derived From Collected Field Data
,”
Geotech. Geol. Eng.
,
21
(
1
), pp.
29
46
.
89.
Tomlinson
,
M.
, and
Woodward
,
J.
,
2014
,
Pile Design and Construction Practice
, 6th ed.,
Taylor & Francis/CRC Press
,
Boca Raton, FL
, Chap. 4.
90.
API
,
2002
, “
Recommended Practice for Planning, Designing and Construction of Fixed Offshore Platforms
,”
API Recommended Practice 2A-WSD
(API RP 2A-WSD), 21st ed.,
American Petroleum Institute
, Washington, DC, p.
237
.
91.
Parkin
,
A. K.
, and
Lunne
,
T.
,
1982
, “
Boundary Effect in the Laboratory Calibration of a Cone Penetrometer for Sand
,”
Second European Symposium on Penetration Testing
, Amsterdam, The Netherlands, May 24–27, Vol.
2
, pp.
761
768
.
92.
Schnaid
,
F.
, and
Houlsby
,
G.
,
1991
, “
An Assessment of Chamber Size Effects in the Calibration of In Situ Tests in Sand
,”
Geotechnique
,
41
(
3
), pp.
437
445
.
93.
Schnaid
,
F.
, and
Houlsby
,
G.
,
1992
, “
Measurement of the Properties of Sand in a Calibration Chamber by the Cone Pressure Meter Test
,”
Geotechnique
,
42
(
4
), pp.
587
601
.
94.
Salgado
,
R.
,
Mitchel
,
J. K.
, and
Jamiolkowski
,
M.
,
1998
, “
Calibration Chamber Size Effects on Penetration Resistance in Sand
,”
ASCE J. Geotech. Geoenviron. Eng.
,
124
(
9
), pp.
878
888
.
95.
Uesugi
,
M.
,
Kishida
,
H.
, and
Tsubakihara
,
Y.
,
1988
, “
Behavior of Sand Particles in Sand-Steel Friction
,”
Soils Found.
,
28
(
1
), pp.
107
118
.
96.
Nemat-Nasser
,
S.
, and
Okada
,
N.
,
2001
, “
Radiographic and Microscopic Observation of Shear Bands in Granular Materials
,”
Geotechnique
,
51
(
9
), pp.
753
765
.
97.
White
,
D. J.
, and
Bolton
,
M. D.
,
2004
, “
Displacement and Strain Paths During Plane-Strain Model Pile Installation in Sand
,”
Geotechnique
,
54
(
6
), pp.
375
397
.
98.
Garnier
,
J.
, and
Konig
,
D.
,
1998
, “
Scale Effects in Piles and Nails Loading Tests in Sand
,”
Centrifuge 98
, Vol.
1
,
T.
Kimura
,
O.
Kusakabe
, and
J.
Takemura
, eds.,
A. A. Balkema
,
Rotterdam, The Netherlands
, pp.
205
210
.
99.
Foray
,
P.
,
Balachowski
,
L.
, and
Rault
,
G.
,
1998
, “
Scale Effect in Shaft Friction Due to the Localization of Deformations
,”
Centrifuge 98
, Vol.
1
,
T.
Kimura
,
O.
Kusakabe
, and
J.
Takemura
, eds.,
A. A. Balkema
,
Rotterdam, The Netherlands
, pp.
211
216
.
100.
Rimoy
,
S.
,
Silva
,
M.
,
Jardine
,
R.
,
Yang
,
Z. X.
,
Zhu
,
B. T.
, and
Tsuha
,
C. H. C.
,
2015
, “
Field and Model Investigations Into the Influence of Age on Axial Capacity of Displacement Piles in Silica Sands
,”
Geotechnique
,
65
(
7
), pp.
576
589
.
101.
Jaky
,
J.
,
1944
, “
The Coefficient of Earth Pressure at Rest (A Nyugalmi Nyomas Tenyezoje)
,”
J. Soc. Hung. Arch. Eng.
,
7
, pp.
355
358
[Magy. Mern. Epitesz-Egylet Kozl.,
7
, pp. 355–358 (in Hungarian)].
102.
Bellotti
,
R.
,
Benoit
,
J.
,
Fretti
,
C.
, and
Jamiolkowski
,
M.
,
1997
, “
Stiffness of Toyoura Sand From Dilatometer Tests
,”
ASCE J. Geotech. Geoenviron. Eng.
,
123
(
9
), pp.
836
846
.
103.
Yamashita
,
S.
,
Jamiolkowski
,
M.
, and
Lo Presti
,
M. D. C. F.
,
2000
, “
Stiffness Nonlinearity of Three Sands
,”
ASCE J. Geotech. Geoenviron. Eng.
,
126
(
10
), pp.
929
938
.
104.
Poulos
,
H. G.
, and
Davis
,
E. H.
,
1980
,
Pile Foundation Analysis and Design
,
Wiley
,
New York
, Chap. 5.
105.
Chakraborty
,
T.
, and
Salgado
,
R.
,
2010
, “
Dilatancy and Shear Strength of Sand at Low Confining Pressures
,”
ASCE J. Geotech. Geoenviron. Eng.
,
136
(
3
), pp.
527
532
.
106.
Chow
,
F. C.
,
Jardine
,
R. J.
,
Brucy
,
F.
, and
Naroy
,
J. F.
,
1998
, “
Effects of Time on the Capacity of Pipe Piles in Dense Marine Sand
,”
ASCE J. Geotech. Eng.
,
124
(
3
), pp.
254
264
.
107.
Tan
,
S. L.
,
Cuthbertson
,
J.
, and
Kimmerling
,
R. E.
,
2004
, “
Prediction of Pile Set-Up in Non-Cohesive Soil
,”
Current Practices and Future Trends in Deep Foundations
, ASCE Geotechnical Special Publication, Los Angeles, CA, July 27–31, Vol.
125
, pp.
50
65
.
108.
Steward
,
E. J.
, and
Wang
,
X.
,
2011
, “
Predicting Pile Setup (Freeze): A New Approach Considering Soil Aging and Pore Pressure Dissipation
,”
Geo-Frontiers 2011
, ASCE, Dallas, TX, Mar. 13–16, pp.
11
19
.
109.
York
,
D. L.
,
Brusey
,
W. G.
,
Clemente
,
F. M.
, and
Law
,
S. K.
,
1994
, “
Setup and Relaxation in Glacial Sand
,”
ASCE J. Geotech. Eng.
,
120
(
9
), pp.
1498
1513
.
110.
Yan
,
W. M.
, and
Yuen
,
K. V.
,
2010
, “
Prediction of Pile Set-Up in Clays and Sands
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
10
(
1
), pp.
1
8
.
You do not currently have access to this content.