Recently, the flexible cryogenic hose has been preferred as an alternative to exploit offshore liquefied natural gas (LNG), in which helical corrugated steel pipe is the crucial component with C-shaped corrugation. Parametric finite element models of the LNG cryogenic helical corrugated pipe are established using a three-dimensional shell element in this paper. Considering the nonlinearity of cryogenic material and large geometric structural deformation, mechanical behaviors are simulated under axial tension, bending, and internal pressure loads. In addition, design parameters are determined to optimize the shape of flexible cryogenic hose structures through sectional dimension analysis, and sensitivity analysis is performed with changing geometric parameters. A multi-objective optimization to minimize stiffness and stress is formulated under operation conditions. Full factorial experiment and radial basis function (RBF) neural network are applied to establish the approximated model for structure analysis. The set of Pareto optimal solutions and value range of parameters are obtained through nondominated sorting genetic algorithm II (NSGA-II) under manufacturing and stiffness constraints, thereby providing a feasible optimal approach for the structural design of LNG cryogenic corrugated hose.

References

References
1.
Eide
,
J.
,
Eide
,
S. I.
,
Samuelsen
,
A.
,
Lotveit
,
S. A.
, and
Aanesland
,
V.
,
2002
, “
A New Solution for Tandem Offloading of LNG
,”
Offshore Technology Conference
(
OTC
), Houston, TX, May 6–9, Paper No. OTC-14096-MS.
2.
Cox
,
P. J. C.
,
Gerez
,
J. M.
, and
Biaggi
,
J. P.
,
2003
, “
Cryogenic Flexible for Offshore LNG Transfer
,”
Offshore Technology Conference
(
OTC
), Houston, TX, May 5–8, Paper No. OTC-15400-MS.
3.
Witz
,
J. A.
,
Ridolfi
,
M. V.
, and
Hall
,
G. A.
,
2004
, “
Offshore LNG Transfer—A New Flexible Cryogenic Hose for Dynamic Service
,”
Offshore Technology Conference
(
OTC
), Houston, TX, May 3–6, Paper No. OTC-16270-MS.
4.
Yue
,
Q.
,
Lu
,
Q.
,
Yan
,
J.
,
Zheng
,
J.
, and
Palmer
,
A.
,
2013
, “
Tension Behavior Prediction of Flexible Pipelines in Shallow Water
,”
Ocean Eng.
,
58
, pp.
201
207
.
5.
Tang
,
M. G.
,
Yan
,
J.
,
Wang
,
Y.
, and
Yue
,
Q. J.
,
2014
, “
Tensile Stiffness Analysis on Ocean Dynamic Power Umbilical
,”
China Ocean Eng.
,
28
(
2
), pp.
259
270
.
6.
Jaiman
,
R. K.
,
Oakley
,
O. H.
, and
Adkins
,
J. D.
,
2010
, “
CFD Modeling of Corrugated Flexible Pipe
,”
ASME
Paper No. OMAE2010-20509.
7.
Narasimham
,
S. V.
,
Paliwal
,
D. N.
, and
Upadhyaya
,
A. P.
,
1997
, “
Stress Analysis of V-Shaped Expansion Joints Under Internal Pressure
,”
Int. J. Pressure Vessels Piping
,
71
(
1
), pp.
35
45
.
8.
Laupa
,
A.
, and
Weil
,
N. A.
,
1962
, “
Analysis of U-Shaped Expansion Joints
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
115
123
.
9.
Anderson
,
W. F.
,
1964
, “
Analysis of Stresses in Bellows. Part I. Design Criteria and Test Results
,” Atomics International, Division of the North American Aviation, Canoga Park, CA, Technical Report No.
NAA-SR-4527
.
10.
Liang
,
H.
,
1993
, “
Problems of U-Shaped Bellows With Nonlinear Deformation of Large Axisymmetrical Deflection (I)—Counting Nonlinear Deformations of Ring Shells and Compressed Angle of Bellows
,”
Appl. Math. Mech.
,
14
(
3
), pp.
253
267
.
11.
Zhu
,
W. P.
, and
Huang
,
Q.
,
2002
, “
Finite Element Displacement Perturbation Method for Geometric Nonlinear Behaviors of Shells of Revolution Overall Bending in a Meridional Plane and Application to Bellow (II)
,”
Appl. Math. Mech.
,
23
(
12
), pp.
1390
1406
.
12.
Srivastava
,
V.
,
Buitrago
,
J.
, and
Slocum
,
S. T.
,
2011
, “
Stress Analysis of a Cryogenic Corrugated Pipe
,”
ASME
Paper No. OMAE2011-49852.
13.
Buitrago
,
J.
,
Slocum
,
S. T.
,
Hudak
,
S. J.
, and
Long
,
R.
,
2010
, “
Cryogenic Structural Performance of Corrugated Pipe
,”
ASME
Paper No. OMAE2010-21155.
14.
Bardi
,
F. C.
,
Tang
,
H.
,
Kulkarni
,
M.
, and
Yin
,
X.
,
2011
, “
Structural Analysis of Cryogenic Flexible Hose
,”
ASME
Paper No. OMAE2011-50238.
15.
Ko
,
B. G.
,
Park
,
G. J.
, and
Lee
,
W. I.
,
1995
, “
Mechanical Behavior of U-Shaped Bellows and Shape Optimal Design Using Multiple Objective Optimization Method
,”
J. Mech. Sci. Technol.
,
9
(
1
), pp.
91
101
.
16.
Li
,
Y.
, and
Sheng
,
S.
,
1990
, “
Strength Analysis and Structural Optimization of U-Shaped Bellows
,”
Int. J. Pressure Vessels Piping
,
42
(
1
), pp.
33
46
.
17.
Evtushenko
,
Y. G.
, and
Posypkin
,
M. A.
,
2014
, “
A Deterministic Algorithm for Global Multi-Objective Optimization
,”
Optim. Methods Software
,
29
(
5
), pp.
1005
1019
.
18.
Tang
,
M.
,
Yan
,
J.
,
Chen
,
J.
,
Yang
,
Z.
, and
Yue
,
Q.
,
2015
, “
Nonlinear Analysis and Multi-Objective Optimization for Bend Stiffeners of Flexible Riser
,”
J. Mar. Sci. Technol.
,
20
(
4
), pp.
591
603
.
19.
Deng
,
J.
,
Yan
,
J.
, and
Cheng
,
G.
,
2013
, “
Multi-Objective Concurrent Topology Optimization of Thermoelastic Structures Composed of Homogeneous Porous Material
,”
Struct. Multidiscip. Optim.
,
47
(
4
), pp.
583
597
.
20.
Coello
,
C. A. C.
,
Van Veldhuizen
,
D. A.
, and
Lamont
,
G. B.
,
2007
,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Springer
,
New York
, pp.
88
110
.
21.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.
22.
Fang
,
H.
, and
Horstemeyer
,
M. F.
,
2006
, “
Global Response Approximation With Radial Basis Functions
,”
Eng. Optim.
,
38
(
4
), pp.
407
424
.
23.
Jeong
,
S.
,
Murayama
,
M.
, and
Yamamoto
,
K.
,
2005
, “
Efficient Optimization Design Method Using Kriging Mode
,”
J. Aircr.
,
42
(
2
), pp.
413
420
.
24.
Liu
,
X.
,
Cheng
,
G.
,
Yan
,
J.
, and
Jiang
,
L.
,
2012
, “
Singular Optimum Topology of Skeletal Structures With Frequency Constraints by AGGA
,”
Struct. Multidiscip. Optim.
,
45
(
3
), pp.
451
466
.
25.
Coello
,
C. C.
,
Pulido
,
G. T.
, and
Montes
,
E. M.
,
2005
,
Information Processing With Evolutionary Algorithms: From Industrial Applications to Academic Speculations
,
Springer Science & Business Media
,
London
, pp.
213
231
.
26.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T. A. M. T.
,
2002
, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.