This study presents an analytical model of flexible riser and implements it into finite-element software abaqus to investigate the fatigue damage of helical wires near touchdown point (TDP). In the analytical model, the interlayer contact pressure is simulated by setting up springs between adjacent interlayers. The spring stiffness is iteratively updated based on the interlayer penetration and separation conditions in the axisymmetric analysis. During the bending behavior, the axial stress of helical wire along the circumferential direction is traced to determine whether the axial force overcomes the interlayer friction force and thus lead to sliding. Based on the experimental data in the literature, the model is verified. The present study implements this model into abaqus to carry out the global analysis of the catenary flexible riser. In the global analysis, the riser–seabed interaction is simulated by using a hysteretic seabed model in the literature. The effect of the seabed stiffness and interlayer friction on the fatigue damage of helical wire near touchdown point is parametrically studied, and the results indicate that these two aspects significantly affect the helical wire fatigue damage, and the sliding of helical wires should be taken into account in the global analysis for accurate prediction of fatigue damage. Meanwhile, different from the steel catenary riser, high seabed stiffness may not correspond to high fatigue damage of helical wires.

References

1.
de Sousa
,
J. R. M.
,
de Sousa
,
F. J. M.
, and
de Siqueira
,
M. Q.
,
2012
, “
A Theoretical Approach to Predict the Fatigue Life of Flexible Pipes
,”
J. Appl. Math.
,
2012
(
6
), pp.
1927
1936
.
2.
de Sousa
,
J. R. M.
,
Magluta
,
C.
, and
Roitman
,
N.
,
2009
, “
On the Response of Flexible Risers to Loads Imposed by Hydraulic Collars
,”
Appl. Ocean Res.
,
31
(
3
), pp.
157
170
.
3.
de Sousa
,
J. R. M.
,
Magluta
,
C.
, and
Roitman
,
N.
,
2013
, “
A Study on the Response of a Flexible Pipe to Combined Axisymmetric Loads
,”
ASME
Paper No. OMAE2013-11384.
4.
de Sousa
,
J. R. M.
,
Campello
,
G. C.
, and
Kwietniewski
,
C. E. F.
,
2014
, “
Structural Response of a Flexible Pipe With Damaged Tensile Armor Wires Under Pure Tension
,”
Mar. Struct.
,
39
, pp.
1
38
.
5.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Axial-Torsional Structural Behavior of Flexible Pipe, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
(
2–3
), pp.
205
227
.
6.
Witz
,
J. A.
, and
Tan
,
Z.
,
1992
, “
On the Flexural Structural Behaviour of Flexible Pipes, Umbilicals and Marine Cables
,”
Mar. Struct.
,
5
(
2–3
), pp.
229
249
.
7.
Out
,
J. M. M.
, and
von Morgen
,
B. J.
,
1997
, “
Slippage of Helical Reinforcing on a Bent Cylinder
,”
Eng. Struct.
,
19
(
6
), pp.
507
515
.
8.
Leroy
,
J. M.
, and
Estrier
,
P.
,
2001
, “
Calculation of Stresses and Slips in Helical Layers of Dynamically Bent Flexible Pipes
,”
Oil Gas Sci. Technol.
,
56
(
6
), pp.
545
554
.
9.
Kraincanic
,
I.
, and
Kebadze
,
E.
,
2001
, “
Slip Initiation and Progression in Helical Armouring Layers of Unbonded Flexible Pipes and Its Effect on Pipe Bending Behavior
,”
J. Strain Anal.
,
36
(
3
), pp.
265
275
.
10.
Østergaard
,
N. H.
,
Lyckegaard
,
A.
, and
Andreasen
,
J. H.
,
2012
, “
A Method for Prediction of the Equilibrium State of a Long and Slender Wire on a Frictionless Toroid Applied for Analysis of Flexible Pipe Structures
,”
Eng. Struct.
,
34
(
1
), pp.
391
399
.
11.
Roberto
,
R. J.
, and
Celso
,
P. P.
,
2003
, “
A Consistent Analytical Model to Predict the Structural Behavior of Flexible Risers Subjected to Combined Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(
2
), pp.
141
146
.
12.
Bahtui
,
A.
,
Bahai
,
H.
, and
Alfano
,
G.
,
2009
, “
Numerical and Analytical Modeling of Unbonded Flexible Risers
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
2
), p.
021401
.
13.
Alfano
,
G.
,
Bahtui
,
A.
, and
Bahai
,
H.
,
2009
, “
Numerical Derivation of Constitutive Models for Unbonded Flexible Risers
,”
Int. J. Mech. Sci.
,
51
(
4
), pp.
295
304
.
14.
Bahtui
,
A.
,
Alfano
,
G.
, and
Bahai
,
H.
,
2010
, “
On the Multi-Scale Computation of Un-Bonded Flexible Risers
,”
Eng. Struct.
,
32
(
8
), pp.
2287
2299
.
15.
Sævik
,
S.
,
2011
, “
Theoretical and Experimental Studies of Stresses in Flexible Pipes
,”
Comput. Struct.
,
89
(
23–24
), pp.
2273
2291
.
16.
Wang
,
K. P.
,
Xue
,
H. X.
, and
Tang
,
W. Y.
,
2013
, “
Fatigue Analysis of Steel Catenary Riser at the Touch-Down Point Based on Linear Hysteretic Riser-Soil Interaction Model
,”
Ocean Eng.
,
68
(
4
), pp.
102
111
.
17.
Wang
,
K. P.
,
Tang
,
W. Y.
, and
Xue
,
H. X.
,
2015
, “
Time Domain Approach for Coupled Cross-Flow and In-Line VIV Induced Fatigue Damage of Steel Catenary Riser at Touchdown Zone
,”
Mar. Struct.
,
41
, pp.
267
287
.
18.
McNamara
,
J. F.
, and
Harte
,
A. M.
,
1989
, “
Three Dimensional Analytical Simulation of Flexible Pipe Wall Structure
,”
ASME J. Offshore Mech. Arct. Eng.
,
114
(
2
), pp.
69
75
.
19.
Skeie
,
G.
,
Sødahl
,
N.
, and
Steinkjer
,
O.
,
2012
, “
Efficient Fatigue Analysis of Helix Elements in Umbilicals and Flexible Risers: Theory and Applications
,”
J. Appl. Math.
,
2012
, p.
246812
.
20.
Dong
,
L. L.
,
Huang
,
Y.
, and
Zhang
,
Q.
,
2013
, “
An Analytical Model to Predict the Bending Behavior of Unbonded Flexible Pipes
,”
J. Ship Res.
,
57
(
3
), pp.
171
177
.
21.
Aubeny
,
C. P.
, and
Biscontin
,
G.
,
2009
, “
Seafloor-Riser Interaction Model
,”
Int. J. Geomech.
,
9
(
3
), pp.
133
141
.
22.
Witz
,
J. A.
,
1996
, “
A Case Study in the Cross-Section Analysis of Flexible Risers
,”
Mar. Struct.
,
9
(
9
), pp.
885
904
.
23.
Zhang
,
M. M.
,
Chen
,
X. Q.
,
Fu
,
S. X.
,
Guo
,
Y. S.
, and
Ma
,
L. X.
,
2015
, “
Theoretical and Numerical Analysis of Bending Behavior of Unbonded Flexible Risers
,”
Mar. Struct.
,
44
, pp.
311
325
.
24.
Tang
,
M. G.
,
Yang
,
C.
,
Yan
,
J.
, and
Yue
,
Q. J.
,
2015
, “
Validity and Limitation of Analytical Models for the Bending Stress of a Helical Wire in Unbonded Flexible Pipes
,”
Appl. Ocean Res.
,
50
, pp.
58
68
.
25.
Chen
,
M. H.
,
2011
, “
Fatigue Analysis of Flexible Pipes Using Alternative Element Types and Bend Stiffener Data
,”
M.Sc. thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
26.
DNV
,
2010
, “
Fatigue Design of Offshore Steel Structures
,” Det Norske Veritas, Oslo, Norway, Standard No.
DNV-RP-C203
.
27.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
159
164
.
28.
Passano
,
E.
, and
Larsen
,
C. M.
,
2007
, “
Estimating Distributions for Extreme Response of a Catenary Riser
,”
ASME
Paper No. OMAE2007-29547.
29.
Randolph
,
M.
, and
Quiggin
,
P.
,
2009
, “
Non-Linear Hysteretic Seabed Model for Catenary Pipeline Contact
,”
ASME
Paper No. OMAE2009-79259.
You do not currently have access to this content.