The oil and gas industry is pushing toward new unexplored remote areas, potentially rich in resources but with limited industry presence, infrastructure, and emergency preparedness. Maintenance support is very important and challenging in such remote areas. A platform supply vessel (PSV) is an essential part of maintenance support. Hence, the acceptable level of its availability performance is high. Identification of critical components of the PSV provides essential information for optimizing maintenance management, defining a spare parts strategy, estimating competence needs for PSV operation, and achieving the acceptable level of availability performance. Currently, there are no standards or guidelines for the criticality analysis of PSVs for maintenance purposes. In this paper, a methodology for the identification of the critical components of PSVs has been developed, based on the available standard. It is a systematic screening process. The method considers functional redundancy and the consequences of loss of function as criticality criteria at the main and subfunction levels. Furthermore, at the component level, risk tools such as failure modes, effects and criticality analysis (FMECA), and fault tree analysis (FTA) will be applied in order to identify the most critical components. Moreover, the application of the proposed approach will be illustrated by a real case study.

References

References
1.
Gao
,
X.
,
Barabady
,
J.
, and
Markeset
,
T.
,
2010
, “
An Approach for Prediction of Petroleum Production Facility Performance Considering Arctic Influence Factors
,”
Reliab. Eng. Syst. Saf.
,
95
(
8
), pp.
837
846
.
2.
Barabadi
,
A.
,
Barabady
,
J.
, and
Markeset
,
T.
,
2014
, “
Application of Reliability Models With Covariates in Spare Part Prediction and Optimization–A Case Study
,”
Reliab. Eng. Syst. Saf.
,
123
, pp.
1
7
.
3.
Kayrbekova
,
D.
,
Barabadi
,
A.
, and
Markeset
,
T.
,
2011
, “
Maintenance Cost Evaluation of a System to be Used in Arctic Conditions: A Case Study
,”
J. Qual. Maint. Eng.
,
17
(
4
), pp.
320
336
.
4.
Aas
,
B.
,
Halskau
,
Ø.
, Sr.
, and
Wallace
,
S. W.
,
2009
, “
The Role of Supply Vessels in Offshore Logistics
,”
Marit. Econ. Logist.
,
11
(
3
), pp.
302
325
.
5.
OffshoreBulletin
,
2013
, “
North Sea PSV Spot Market Continues to Return Healthy Day Rates
,” Offshore Bulletin, Stavanger, Norway, last accessed June 20, 2016, https://offshorebulletin.wordpress.com/tag/day-rate/
6.
NORSOK
,
2001
,
Z-008: Criticality Analysis for Maintenance Purposes, Rev. 2.
,
Norwegian Technology Centre
, Lysaker, Norway.
7.
Selvik
,
J. T.
, and
Aven
,
T.
,
2011
, “
A Framework for Reliability and Risk Centered Maintenance
,”
Reliab. Eng. Syst. Saf.
,
96
(
2
), pp.
324
331
.
8.
Rausand
,
M.
,
1998
, “
Reliability Centered Maintenance
,”
Reliab. Eng. Syst. Saf.
,
60
(
2
), pp.
121
132
.
9.
de León Hijes
,
F. C. G.
, and
Cartagena
,
J. J. R.
,
2006
, “
Maintenance Strategy Based on a Multicriterion Classification of Equipments
,”
Reliab. Eng. Syst. Saf.
,
91
(
4
), pp.
444
451
.
10.
MIL-STD-1629A
,
1980
,
Procedures for Performing a Failure Mode, Effect and Criticality Analysis
,
U.S. Department of Defense
, Arlington, VA.
11.
Ayele
,
Y. Z.
,
Barabadi
,
A.
, and
Barabady
,
J.
,
2016
, “
Dynamic Spare Parts Transportation Model for Arctic Production Facility
,”
Int. J. Syst. Assur. Eng. Manage.
,
7
(
1
), pp.
84
98
.
12.
Stamatis
,
D. H.
,
2003
,
Failure Mode and Effect Analysis: FMEA From Theory to Execution
,
ASQ Quality Press
,
Milwaukee, WI
.
13.
Carot
,
V.
, and
Sanz
,
J.
,
2000
, “
Criticality and Sensitivity Analysis of the Components of a System
,”
Reliab. Eng. Syst. Saf.
,
68
(
2
), pp.
147
152
.
14.
Boland
,
P. J.
, and
El-Neweihi
,
E.
,
1995
, “
Measures of Component Importance in Reliability Theory
,”
Comput. Oper. Res.
,
22
(
4
), pp.
455
463
.
15.
Ramirez-Marquez
,
J. E.
,
Rocco
,
C. M.
,
Gebre
,
B. A.
,
Coit
,
D. W.
, and
Tortorella
,
M.
,
2006
, “
New Insights on Multi-State Component Criticality and Importance
,”
Reliab. Eng. Syst. Saf.
,
91
(
8
), pp.
894
904
.
16.
Boland
,
P. J.
,
El-Neweihi
,
E.
, and
Proschan
,
F.
,
1992
, “
Redundancy Importance and Allocation of Spares in Coherent Systems
,”
J. Stat. Plann. Inference
,
29
(
1
), pp.
55
65
.
17.
Wang
,
W.
,
Loman
,
J.
, and
Vassiliou
,
P.
,
2004
, “
Reliability Importance of Components in a Complex System
,”
Reliability and Maintainability, Annual Symposium-RAMS
,
IEEE
, Jan. 26–29, pp. 6–11.
18.
Borgonovo
,
E.
,
2007
, “
Differential, Criticality and Birnbaum Importance Measures: An Application to Basic Event, Groups and SSCs in Event Trees and Binary Decision Diagrams
,”
Reliab. Eng. Syst. Saf.
,
92
(
10
), pp.
1458
1467
.
19.
Kim
,
K. O.
,
Yang
,
Y.
, and
Zuo
,
M. J.
,
2013
, “
A New Reliability Allocation Weight for Reducing the Occurrence of Severe Failure Effects
,”
Reliab. Eng. Syst. Saf.
,
117
, pp.
81
88
.
20.
Høyland
,
A.
, and
Rausand
,
M.
,
2009
,
System Reliability Theory: Models and Statistical Methods
,
Wiley
,
Hoboken, NJ
.
21.
Saadi
,
S.
,
Djebabra
,
M.
, and
Boubaker
,
L.
,
2011
, “
Proposal for a New Allocation Method of Environmental Goals Applied to an Algerian Cement Factory
,”
Manage. Environ. Qual. Int. J.
,
22
(
5
), pp.
581
594
.
22.
Carmignani
,
G.
,
2009
, “
An Integrated Structural Framework to Cost-Based FMECA: The Priority-Cost FMECA
,”
Reliab. Eng. Syst. Saf.
,
94
(
4
), pp.
861
871
.
23.
Rosqvist
,
T.
, and
Tuominen
,
R.
,
1999
, “
Expert Judgment Models in Quantitative Risk Assessment
,” International Atomic Energy Agency, Vienna, Austria, last accessed Feb. 12, 2015, http://www.iaea.org/inis/collection/NCLCollection-Store/_Public/31/016/31016454.pdf
24.
Barabadi
,
A.
,
Gudmestad
,
R.
, and
Barabady
,
J.
,
2015
, “
RAMS Data Collection Under Arctic Conditions
,”
Reliab. Eng. Syst. Saf.
,
135
, pp.
92
99
.
25.
Markeset
,
T.
,
2008
, “
Design for High Performance Assurance for Offshore Production Facilities in Remote Harsh and Sensitive Environments
,”
OPSEARCH
,
45
(
3
), p.
275
.
26.
Ayele
,
Y. Z.
,
Barabadi
,
A.
, and
Markeset
,
T.
,
2013
, “
Spare Part Transportation Management in High North
,”
International Conference on Port and Ocean Engineering Under Arctic Conditions
, Espoo, Finland.
27.
Barabadi
,
A.
, and
Markeset
,
T.
,
2011
, “
Reliability and Maintainability Performance Under Arctic Conditions
,”
Int. J. Syst. Assur. Eng. Manage.
,
2
(
3
), pp.
205
217
.
28.
Hora
,
S. C.
,
2009
, “
Expert Judgment in Risk Analysis
,” Non-Published Research Reports,
Paper No. 120
, University of Southern California, Los Angeles, CA.
29.
Ayele
,
Y. Z.
,
Barabady
,
J.
, and
Droguett
,
E. L.
,
2016
, “
Dynamic Bayesian Network Based Risk Assessment for Arctic Offshore Drilling Waste Handling Practices
,”
ASME J. Offshore Mech. Arct.
,
138
(
5
), p.
051302
.
30.
Ayele
,
Y. Z.
,
Barabadi
,
A.
, and
Droguett
,
E. L.
,
2016
, “
Risk-Based Cost-Effectiveness Analysis of Waste Handling Practices in the Arctic Drilling Operation
,”
ASME J. Offshore Mech. Arct.
,
138
(
3
), p.
031301
.
31.
ISO
,
2008
,
Petroleum, Petrochemical and Natural Gas Industries–Production Assurance and Reliability Management
, International Organization for Standardization, Geneva, Switzerland.
32.
Hokstad
,
P.
, and
Steiro
,
T.
,
2006
, “
Overall Strategy for Risk Evaluation and Priority Setting of Risk Regulations
,”
Reliab. Eng. Syst. Saf.
,
91
(
1
), pp.
100
111
.
33.
Ådnanes
,
A. K.
,
2003
,
Maritime Electrical Installations and Diesel Electric Propulsion
, Vol.
4
,
ABB AS Marine
, Trondheim, Norway, pp.
64
67
.
34.
Ortiz
,
N.
,
Wheeler
,
T.
,
Breeding
,
R.
,
Hora
,
S.
,
Meyer
,
M.
, and
Keeney
,
R.
,
1991
, “
Use of Expert Judgment in NUREG-1150
,”
Nucl. Eng. Des.
,
126
(
3
), pp.
313
331
.
35.
Chang
,
S. E.
,
McDaniels
,
T.
,
Fox
,
J.
,
Dhariwal
,
R.
, and
Longstaff
,
H.
,
2014
, “
Toward Disaster-Resilient Cities: Characterizing Resilience of Infrastructure Systems With Expert Judgments
,”
Risk Anal.
,
34
(
3
), pp.
416
434
.
36.
Cooke
,
R. M.
,
1991
,
Experts in Uncertainty: Opinion and Subjective Probability in Science
,
Oxford University Press
,
New York
.
37.
SFI Group System
,
2002
, “
A System for Classification of Technical and Economic Ship Information
,” Inmarsat Group, London, UK, last accessed Jun. 6, 2015, http://www.engineeringmaintenance.info/cmmsasset-management-software-mainmenu-104/3474-sfi-group-system-a-system-for-classification-of-technical-and-economic-ship-information
38.
Braglia
,
M.
,
2000
, “
MAFMA: Multi-Attribute Failure Mode Analysis
,”
Int. J. Qual. Reliab. Manage.
,
17
(
9
), pp.
1017
1033
.
39.
Bowles
,
J. B.
, and
Peláez
,
C. E.
,
1995
, “
Fuzzy Logic Prioritization of Failures in a System Failure Mode, Effects and Criticality Analysis
,”
Reliab. Eng. Syst. Saf.
,
50
(
2
), pp.
203
213
.
40.
OREDA
,
2002
,
OREDA Offshore Reliability Data Handbook
,
DNV
, Oslo, Norway.
41.
OREDA
,
2009
, “
OREDA Handbook
,”
Topside Equipment
, Vol.
1
,
OREDA
, Oslo, Norway.
42.
Panesar
,
S. S.
,
Kumar
,
R.
, and
Markeset
,
T.
,
2008
, “
Development of Maintenance Strategies for Offshore Production Facilities
,”
3rd World Congress on Engineering Asset Management and Intelligent Maintenance Systems (WCEAM-IMS 2008)
, Beijing, China, Oct. 28–30, pp. 1227–1232.
You do not currently have access to this content.