A computational fluid dynamics (CFD) based numerical wave tank (NWT) is developed and verified to study wave load effects on fixed and free floating offshore structures. The model is based on solving Navier–Stokes equations on a structured grid, level set method for tracking the free surface, and an immersed boundary method for studying wave–structure interaction. This paper deals with establishing and verifying a CFD-based NWT. Various concerns that arise during this establishment are discussed, namely effects of wave reflection which might affect the structure response, damping of waves in downstream, and three-dimensional (3D) effects of the waves. A method is described and verified to predict the time when incoming waves from wave generator are affected by reflecting waves from the structure which can help in better designing the dimensions of NWT. The model is then used to study sway, heave, and roll responses of a floating barge which is nonuniform in density and limited in sway direction by a spring and damper. Also, it is used to study wave loads on a fixed, large diameter, surface piercing circular cylinder. The numerical results are compared with the experimental and other numerical results, and in general very good agreement is observed in all range of studied wave frequencies. It is shown that for the studied fixed cylinder, the Morison equation leads to promising results for wavelength to diameter ratio larger than 2π (kD < 1), while for shorter wavelengths results in considerable over prediction of wave loads, due to simplification of wave diffraction effects.

References

References
1.
Ohyama
,
T.
, and
Nadaoka
,
K.
,
1991
, “
Development of a Numerical Wave Tank for Analysis of Nonlinear and Irregular Wave Field
,”
Fluid Dyn. Res.
,
8
(
5
), pp.
231
251
.
2.
Boo
,
S. Y.
,
Kim
,
C. H.
, and
Kim
,
M. H.
,
1994
, “
A Numerical Wave Tank for Nonlinear Irregular Waves by 3-D Higher Order Boundary Element Method
,”
Int. J. Offshore Polar Eng.
,
4
(
4
), pp.
265
272
.
3.
Tanizawa
,
K.
, and
Naito
,
S.
,
1998
, “
A Study of Parametric Roll Motions by Fully Nonlinear Numerical Wave Tank
,”
Int. J. Offshore Polar Eng.
,
8
(4), pp.
251
257
.
4.
Buchmann
,
B.
,
Skourup
,
J.
, and
Cheung
,
K. F.
,
1998
, “
Run-Up on a Structure Due to Second-Order Waves and a Current in a Numerical Wave Tank
,”
Appl. Ocean Res.
,
20
(
5
), pp.
297
308
.
5.
Boo
,
S.
,
2002
, “
Linear and Nonlinear Irregular Waves and Forces in a Numerical Wave Tank
,”
Ocean Eng.
,
29
(
5
), pp.
475
493
.
6.
Falnes
,
J.
,
2002
, “
Optimum Control of Oscillation of Wave-Energy Converters
,”
Int. J. Offshore Polar Eng.
,
12
(
2
), pp.
147
155
.
7.
Babarit
,
A.
,
Hals
,
J.
,
Muliawan
,
M.
,
Kurniawan
,
A.
,
Moan
,
T.
, and
Krokstad
,
J.
,
2012
, “
Numerical Benchmarking Study of a Selection of Wave Energy Converters
,”
Renewable Energy
,
41
, pp.
44
63
.
8.
Nematbakhsh
,
A.
,
Michailides
,
C.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Comparison of Experimental Data of a Moored Multibody Wave Energy Device With a Hybrid CFD and BIEM Numerical Analysis Framework
,”
ASME
Paper No. OMAE2015-41732.
9.
Bachynski
,
E. E.
, and
Moan
,
T.
,
2014
, “
Ringing Loads on Tension Leg Platform Wind Turbines
,”
Ocean Eng.
,
84
, pp.
237
248
.
10.
Chan
,
G. K.
,
Sclavounos
,
P. D.
,
Jonkman
,
J.
, and
Hayman
,
G.
,
2015
, “
Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory
,”
ASME
Paper No. OMAE2015-41053.
11.
Ghasemi
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2015
, “
Computational Simulation of Tethered Undersea Kites for Power Generation
,”
ASME
Paper No. IMECE2015-50809.
12.
Schloer
,
S.
,
Paulsen
,
B. T.
, and
Bredmose
,
H.
,
2014
, “
Application of CFD Based Wave Loads in Aeroelastic Calculations
,”
ASME
Paper No. OMAE2014-24684.
13.
Bokmann
,
A.
,
Pakozdi
,
C.
,
Kristiansen
,
T.
,
Hyunchul
,
J.
, and
Kim
,
J.
,
2014
, “
An Experimental and Computational Development of a Benchmark Solution for the Validation of Numerical Wave Tanks
,”
ASME
Paper No. OMAE2014-24710.
14.
Ren
,
N.
,
Li
,
Y.
, and
Ou
,
J.
,
2014
, “
Coupled Wind-Wave Time Domain Analysis of Floating Offshore Wind Turbine Based on Computational Fluid Dynamics Method
,”
J. Renewable Sustainable Energy
,
6
(
2
), p.
023106
.
15.
Liou
,
M. S.
, and
Kao
,
K. H.
,
1994
, “
Progress in Grid Generation: From Chimera to DRAGON Grids
,” NASA Lewis Research Center, Cleveland, OH,
Technical Report No. NASA-TM-106709
.
16.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2012
,
Computational Methods for Fluid Dynamics
,
3rd ed.
,
Springer Science and Business Media
,
New York
, Chap. 2, pp.
25
31
.
17.
Yang
,
J.
, and
Stern
,
F.
,
2009
, “
Sharp Interface Immersed-Boundary/Level-Set Method for Wave-Body Interactions
,”
J. Comput. Phys.
,
228
(
17
), pp.
6590
6616
.
18.
Kim
,
J. W.
,
Jang
,
H.
,
Kyoung
,
J.
,
Baquet
,
A.
, and
O'Sullivan
,
J.
,
2015
, “
CFD-Based Numerical Wave Basin for Offshore Floater Design
,”
Offshore Technology Conference
, Houston, TX, Paper No. OTC-26060-MS.
19.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.
20.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numerica
,
11
, pp.
479
517
.
21.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F.
,
Vargas
,
A.
, and
Von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
22.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations
,”
J. Comput. Phys.
,
230
(
19
), pp.
7347
7363
.
23.
Park
,
J. C.
,
Kim
,
M. H.
, and
Miyata
,
H.
,
1999
, “
Fully Non-Linear Free-Surface Simulations by a 3D Viscous Numerical Wave Tank
,”
Int. J. Numer. Meth. Fluids
,
29
(
6
), pp.
685
703
.
24.
Bihs
,
H.
, and
Ong
,
M. C.
,
2013
, “
Numerical Simulation of Flows Past Partially-Submerged Horizontal Circular Cylinders in Free Surface Waves
,”
ASME
Paper No. OMAE2013-10529.
25.
Hu
,
C.
, and
Kashiwagi
,
M.
,
2004
, “
A CIP-Based Method for Numerical Simulations of Violent Free-Surface Flows
,”
J. Mar. Sci. Tech.
,
9
(
4
), pp.
143
157
.
26.
Zhao
,
X.
, and
Hu
,
C.
,
2012
, “
Numerical and Experimental Study on a 2D Floating Body Under Extreme Wave Conditions
,”
Appl. Ocean Res.
,
35
, pp.
1
13
.
27.
Yabe
,
T.
,
Xiao
,
F.
, and
Utsumi
,
T.
,
2001
, “
The Constrained Interpolation Profile Method for Multiphase Analysis
,”
J. Comput. Phys.
,
169
(
2
), pp.
556
593
.
28.
Peng
,
W.
,
Lee
,
K. H.
,
Shin
,
S. H.
, and
Mizutani
,
N.
,
2013
, “
Numerical Simulation of Interactions Between Water Waves and Inclined-Moored Submerged Floating Breakwaters
,”
Coast. Eng.
,
82
, pp.
76
87
.
29.
Nematbakhsh
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2013
, “
A Nonlinear Computational Model for Floating Wind Turbines
,”
ASME J. Fluids Eng.
,
135
(
12
), p.
121103
.
30.
Nematbakhsh
,
A.
,
Olinger
,
D. J.
, and
Tryggvason
,
G.
,
2014
, “
Nonlinear Simulation of a Spar Buoy Floating Wind Turbine Under Extreme Ocean Conditions
,”
J. Renewable Sustainable Energy
,
6
(
3
), p.
033121
.
31.
Nematbakhsh
,
A.
,
Bachynski
,
E. E.
,
Gao
,
Z.
, and
Moan
,
T.
,
2014
, “
Comparison of Wave-Induced Response of a TLP Wind Turbine Obtained by CFD Method and Potential Theory
,”
24th International Ocean and Polar Engineering Conference
, Busan, Korea, June 15–20, Paper No. ISOPE-I-14-064.
32.
Nematbakhsh
,
A.
,
Bachynski
,
E. E.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Comparison of Wave Load Effects on a TLP Wind Turbine by Using Computational Fluid Dynamics and Potential Flow Theory Approaches
,”
Appl. Ocean Res.
,
53
, pp.
142
154
.
33.
Sarpkaya
,
T.
,
1986
, “
Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan–Carpenter Numbers
,”
J. Fluid Mech.
,
165
, pp.
61
71
.
34.
Guilmineau
,
E.
, and
Queutey
,
P.
,
2002
, “
A Numerical Simulation of Vortex Shedding From an Oscillating Circular Cylinder
,”
J. Fluid Struct.
,
16
(
6
), pp.
773
794
.
35.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer Science and Business Media
,
New York
.
36.
Iaccarino
,
G.
, and
Verzicco
,
R.
,
2003
, “
Immersed Boundary Technique for Turbulent Flow Simulations
,”
ASME Appl. Mech. Rev.
,
56
(
3
), pp.
331
347
.
37.
Lai
,
M. C.
, and
Peskin
,
C. S.
,
2000
, “
An Immersed Boundary Method With Formal Second-Order Accuracy and Reduced Numerical Viscosity
,”
J. Comput. Phys.
,
160
(
2
), pp.
705
719
.
38.
Curet
,
O. M.
,
AlAli
,
I. K.
,
MacIver
,
M. A.
, and
Patankar
,
N. A.
,
2010
, “
A Versatile Implicit Iterative Approach for Fully Resolved Simulation of Self-Propulsion
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
37
), pp.
2417
2424
.
39.
Nojiri
,
N.
, and
Murayama
,
K.
,
1975
, “
A Study on the Drift Force on Two-Dimensional Floating Body in Regular Waves
,”
Trans. West-Jpn. Soc. Nav. Arch.
,
51
, pp.
131
152
.
40.
Koo
,
W.
, and
Kim
,
M. H.
,
2004
, “
Freely Floating-Body Simulation by a 2D Fully Nonlinear Numerical Wave Tank
,”
Ocean Eng.
,
31
(
16
), pp.
2011
2046
.
41.
Tanizawa
,
K.
,
Minami
,
M.
, and
Naito
,
S.
,
1999
, “
Estimation of Wave Drift Force by Numerical Wave Tank
,”
9th International Offshore and Polar Engineering Conference
, Brest, France, May 30–June 4, Paper No. ISOPE-I-99-274.
42.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
MIT Press
,
Cambridge, MA
, Chap. 6, pp.
257
260
.
43.
Bardestani
,
M.
, and
Faltinsen
,
O. M.
,
2013
, “
A Two-Dimensional Approximation of a Floating Fish Farm in Waves and Current With the Effect of Snap Loads
,”
ASME
Paper No. OMAE2013-10487.
44.
Fenton
,
J.
,
1985
, “
A Fifth-Order Stokes Theory for Steady Waves
,”
J. Waterw. Port Coastal Ocean Eng.
,
111
(
2
), pp.
216
234
.
45.
Lamb
,
H.
,
1932
,
Hydrodynamics
,
Cambridge University Press
,
Cambridge, UK
.
46.
Stern
,
F.
,
Bhushan
,
S.
,
Carrica
,
P.
, and
Yang
,
J.
,
2010
, “
Large Scale Parallel Computing and Scalability Study for Surface Combatant Static Maneuver and Straight Ahead Conditions Using CFDShip-Iowa
,”
Parallel Computational Fluid Dynamics: Recent Advances and Future Directions
,
R.
Biswas
, ed.,
DEStech Publications
,
Lancaster, PA
, pp.
79
94
.
47.
Hogben
,
N.
, and
Standing
,
R.
,
1975
, “
Experience in Computing Wave Loads on Large Bodies
,”
Offshore Technology Conference
, Houston, TX, May 5–8, Paper No. OTC-2189-MS.
48.
Lee
,
C. H.
,
1995
, “
WAMIT Theory Manual
,” Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA,
Report No. 95-2
.
49.
Bachynski
,
E. E.
, and
Ormberg
,
H.
,
2015
, “
Hydrodynamic Modeling of Large-Diameter Bottom-Fixed Offshore Wind Turbines
,”
ASME
Paper No. OMAE2015-42028.
50.
Robertson
,
A.
,
Wendt
,
F.
,
Jonkman
,
J.
,
Popko
,
W.
,
Vorpahl
,
F.
,
Stansberg
,
C. T.
,
Bachynski
,
E. E.
,
Bayati
,
I.
,
Beyer
,
F.
,
de Vaal
,
J. B.
,
Harries
,
R.
,
Yamaguchi
,
A.
,
Shin
,
H.
,
Kim
,
B.
,
Zee
,
T. V.
,
Bozonnet
,
P.
,
Aguilo
,
B.
,
Bergua
,
R.
,
Qvist
,
J.
,
Qijun
,
W.
,
Chen
,
X.
,
Guerinel
,
M.
,
Tu
,
Y.
,
Yutong
,
H.
,
Li
,
R.
, and
Bouy
,
L.
,
2015
, “
OC5 Project Phase I: Validation of Hydrodynamic Loading on a Fixed Cylinder
,”
25th International Offshore and Polar Engineering Conference
, Kona, HI, June 21–26, Paper No. ISOPE-I-15-116.
51.
Morison
,
J.
,
Johnson
,
J.
, and
Schaaf
,
S.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
J. Pet. Tech.
,
2
(
5
), pp.
149
154
.
52.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
, Chap. 1, pp.
10
12
.
53.
Gallardo
,
J. P.
,
Andersson
,
H. I.
, and
Pettersen
,
B.
,
2014
, “
Turbulent Wake Behind a Curved Circular Cylinder
,”
J. Fluid Mech.
,
742
, pp.
192
229
.
54.
Majumdar
,
S.
,
Iaccarino
,
G.
, and
Durbin
,
P.
,
2001
, “
RANS Solvers With Adaptive Structured Boundary Non-Conforming Grids
,”
Annual Research Briefs, Center for Turbulence Research
, Stanford University, Stanford, CA, pp.
353
366
.
55.
Tseng
,
Y. H.
, and
Ferziger
,
J. H.
,
2003
, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Comput. Phys.
,
192
(
2
), pp.
593
623
.
56.
Lohner
,
R.
,
Appanaboyina
,
S.
, and
Cebral
,
J. R.
,
2008
, “
Comparison of Body-Fitted, Embedded and Immersed Solutions of Low Reynolds-Number 3-D Incompressible Flows
,”
Int. J. Numer. Methods Fluids
,
57
(
1
), pp.
13
30
.
57.
Verzicco
,
R.
,
Mohd-Yusof
,
J.
,
Orlandi
,
P.
, and
Haworth
,
D.
,
2000
, “
Large Eddy Simulation in Complex Geometric Configurations Using Boundary Body Forces
,”
AIAA J.
,
38
(
3
), pp.
427
433
.
You do not currently have access to this content.