Passive turbulence control (PTC) in the form of two straight roughness strips with variable width, and thickness about equal to the boundary layer thickness, is used to modify the flow-induced motions (FIM) of a rigid circular cylinder. The cylinder is supported by two end springs and the flow is in the TrSL3, high-lift, regime. The PTC-to-FIM Map, developed in the previous work, revealed zones of weak suppression (WS), strong suppression (SS), hard galloping (HG), and soft galloping (SG). In this paper, the sensitivity of the PTC-to-FIM map to: (a) the width of PTC covering, (b) PTC covering a single or multiple zones, and (c) PTC being straight or staggered is studied experimentally. Experiments are conducted in the low turbulence free surface water channel of the University of Michigan, Ann Arbor, MI. Fixed parameters are: cylinder diameter D = 8.89 cm, m* = 1.725, spring stiffness K = 763 N/m, aspect ratio l/D = 10.29, and damping ratio ζ = 0.019. Variable parameters are circumferential PTC location αPTC (0–180 deg), Reynolds number Re (30,000–120,000), flow velocity U (0.36–1.45 m/s). Measured quantities are amplitude ratio A/D, frequency ratio fosc/fn,w, and synchronization range. As long as the roughness distribution is limited to remain within a zone, the width of the strips does not affect the FIM response. When multiple zones are covered, the strong suppression zone dominates the FIM.

References

References
1.
Hallam
,
H. G.
,
Heaf
,
N. J.
, and
Wootton
,
L. R.
,
1977
, “
Dynamics of Marine Structures
,”
Construction Industry Research and Information Association (CIRIA), London, Report No. UR8
.
2.
Kumar
,
A. R.
,
Sohn
,
C. H.
, and
Lakshmana Gowda
,
B. H. L.
,
2008
, “
Passive Control of Vortex Induced Vibrations: An Overview
,”
Recent Pat. Mech. Eng.
,
1
(
1
), pp.
1
11
.
3.
Assi
,
G. R. S.
,
Bearman
,
P. W.
, and
Kitney
,
N.
,
2009
, “
Low Drag Solutions for Suppressing Vortex-Induced Vibration of Circular Cylinders
,”
J. Fluids Struct.
,
25
(
4
), pp.
666
675
.
4.
Assi
,
G. R. S.
,
Bearman
,
P. W.
,
Kitney
,
N.
, and
Tognarelli
,
M. A.
,
2010
, “
Suppression of Wake-Induced Vibration of Tandem Cylinders With Free-to-Rotate Control Plates
,”
J. Fluids Struct.
,
26
(
7–8
), pp.
1045
1057
.
5.
Bearman
,
P.
, and
Brankovic
,
M.
,
2004
, “
Experimental Studies of Passive Control of Vortex-Induced Vibration
,”
Eur. J. Mech.
,
23
(
1
), pp.
9
15
.
6.
Huang
,
S.
,
2011
, “
VIV Suppression of a Two-Degree-of-Freedom Circular Cylinder and Drag Reduction of a Fixed Circular Cylinder by the Use of Helical Grooves
,”
J. Fluids Struct.
,
27
(
7
), pp.
1124
1133
.
7.
Zdravkovich
,
M. M.
,
1981
, “
Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppressing Vortex Shedding
,”
J. Wind Eng. Ind. Aerodyn.
,
7
(
2
), pp.
145
189
.
8.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
,
2nd ed.
,
Van Nostrand Reinhold
,
New York
.
9.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy from Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.
10.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M. H.
, “
The VIVACE Converter: Model Tests at Reynolds Numbers Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), p.
011102
.
11.
Lee
,
J. H.
, and
Bernitsas
,
M. M.
,
2011
, “
High-Damping, High-Reynolds VIV Tests for Energy Harnessing Using the VIVACE Converter
,”
Ocean Eng.
,
38
(
16
), pp.
1697
1712
.
12.
Chang
,
C. C.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2011
, “
VIV and Galloping of Single Circular Cylinder With Surface Roughness at 3.0 × 104 ≤ Re ≤ 1.2 × 105
,”
Ocean Eng.
,
38
(
16
), pp.
1713
1732
.
13.
Chang
,
C. C.
, and
Bernitsas
,
M. M.
,
2011
, “
Hydrokinetic Energy Harnessing Using the VIVACE Converter With Passive Turbulence Control
,”
ASME
Paper No. OMAE2011-50290.
14.
Kim
,
E. S.
,
Bernitsas
,
M. M.
, and
Kumar
,
A. R.
,
2013
, “
Multi-Cylinder Flow Induced Motions: Enhancement by Passive Turbulence Control at 28,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
1
), p.
021802
.
15.
Sun
,
H.
,
Kim
,
E. S.
,
Bernitsas
,
P. M.
, and
Bernitsas
,
M. M.
,
2015
, “
Virtual Spring–Damping System for Flow-Induced Motion Experiments
,”
ASME J. Offshore Mech. Arct. Eng.
,
137
(
6
), p.
061801
.
16.
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2016
, “
Performance Prediction of Horizontal Hydrokinetic Energy Converter Using Multiple-Cylinder Synergy in Flow Induced Motion
,”
Appl. Energy
,
170
, pp.
92
100
.
17.
Wu
,
W.
,
Bernitsas
,
M. M.
, and
Maki
,
K. J.
,
2014
, “
RANS Simulation vs. Experimental Measurements of Flow Induced Motion of Circular Cylinder With Passive Turbulence Control at 30,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng
,
136
(
4
), p.
041802
.
18.
Ding
,
L.
,
Bernitsas
,
M. M.
, and
Kim
,
E. S.
,
2013
, “
2-D URANS vs. Experiments of Flow Induced Motions of Two Circular Cylinders in Tandem With Passive Turbulence Control for 30,000 < Re < 105,000
,”
Ocean Eng.
,
72
, pp.
429
440
.
19.
Ding
,
L.
,
Zhang
,
L.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2015
, “
URANS vs. Experiments of Flow Induced Motions of Multiple Circular Cylinders With Passive Turbulence Control
,”
J. Fluids Struct.
,
54
, pp.
612
628
.
20.
Dhanak
,
M. R.
, and
Xiros
,
N. I.
, eds.,
2016
,
Springer Handbook of Ocean Engineering
,
Springer-Verlag
,
Berlin
, Chap. 47.
21.
Park
,
H.
,
Bernitsas
,
M. M.
, and
Kumar
,
A. R.
,
2012
, “
Selective Roughness in the Boundary Layer to Suppress Flow-Induced Motions of Circular Cylinder at 30,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
4
), p.
041801
.
22.
Park
,
H.
,
Kumar
,
A. R.
, and
Bernitsas
,
M. M.
,
2013
, “
Enhancement of Flow-Induced Motion of Rigid Circular Cylinder on Springs by Local Surface Roughness at 3 × 104 < Re < 1.2 × 105
,”
Ocean Eng.
,
72
, pp.
403
415
.
23.
Park
,
H. R.
,
Bernitsas
,
M. M.
, and
Kim
,
E. S.
,
2014
, “
Selective Surface Roughness to Suppress Flow-Induced Motions of Two Circular Cylinders at 30,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
4
), p.
041804
.
24.
Park
,
H.
,
Kumar
,
A. R.
, and
Bernitsas
,
M. M.
,
2016
, “
Suppression of Flow Induced Motions of Rigid Circular Cylinder on Springs by Local Surface Roughness at 3 × 104 < Re < 1.2 × 105
,”
Ocean Eng.
,
111
, pp.
218
233
.
25.
Walker
,
D. T.
,
Lyzenga
,
D. R.
,
Ericson
,
E. A.
, and
Lund
,
D. E.
,
1996
, “
Radar Backscatter and Surface Roughness Measurements for Stationary BreakingWaves
,”
Proc. R. Soc., Math. Physic. Eng. Sci.
,
452
(
1952
), pp.
1953
1984
.
26.
Kiu
,
K. Y.
,
Stappenbelt
,
B.
, and
Thiagarajan
,
K. P.
,
2011
, “
Effects of Uniform Surface Roughness on Vortex-Induced Vibration of Towed Vertical Cylinders
,”
J. Sound Vib.
,
330
(
20
), pp.
4753
4763
.
27.
Hover
,
F. S.
,
Tvedt
,
H.
, and
Triantafyllou
,
M. S.
,
2001
, “
Vortex-Induced Vibrations of a Cylinder With Tripping Wires
,”
J. Fluid Mech.
,
448
, pp.
175
195
.
You do not currently have access to this content.