One-dimensional (1D) analytical model and finite element (FE) simulation are employed to investigate the shock mitigation capability of stepwise graded cellular claddings to underwater blast. To build the analytical model, two types of core configurations are considered: (i) “low → high” with the weakest layer being placed at the impinged end and (ii) the “high → low” configuration. Details of fluid–structure interaction (FSI), response of the graded cladding, and the cavitation phenomenon are thoroughly studied. Then the fidelity of the analytical model is assessed by FE simulations. The results reveal that the analytical model can accurately predict the whole process of such problem. Subsequently, the validated analytical models are used to analyze the influence of density gradient on the shock mitigation capability of cellular claddings in terms of the densification loading, the partial impulse imparted to the cladding, and the work done on the cladding by the external impulse. The results illustrate that the graded claddings perform better than the equivalent uniform case. Compared with the negative density gradient case, the “low → high” configuration with weaker layer being placed at the impinged end is preferable since lower force is transmitted to the protected structure.

References

References
1.
Chen
,
Y.
,
Wang
,
Y.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2013
, “
Experimental Research on the Responses of Neoprene Coated Cylinder Subjected to Underwater Explosions
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
1
), p.
011102
.
2.
Xiao
,
F.
,
Chen
,
Y.
, and
Hua
,
H.
,
2014
, “
Comparative Study of the Shock Resistance of Rubber Protective Coatings Subjected to Underwater Explosion
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
2
), p.
021402
.
3.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2004
, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
,
71
(
3
), pp.
386
401
.
4.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
,
30
(
10
), pp.
1283
1305
.
5.
Tilbrook
,
M. T.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2006
, “
The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behavior
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2242
2280
.
6.
Liang
,
Y. M.
,
Spuskanyuk
,
A. V.
,
Flores
,
S. E.
,
Hayhurst
,
D. R.
,
Hutchinson
,
J. W.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2007
, “
The Response of Metallic Sandwich Panels to Water Blast
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
81
99
.
7.
Mcshane
,
G. J.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2007
, “
The Underwater Blast Resistance of Metallic Sandwich Beams With Prismatic Lattice Cores
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
352
364
.
8.
Tilbrook
,
M. T.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2009
, “
Underwater Blast Loading of Sandwich Beams: Regimes of Behavior
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3209
3221
.
9.
McShane
,
G. J.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2010
, “
Underwater Blast Response of Free-Standing Sandwich Plates With Metallic Lattice Cores
,”
Int. J. Impact Eng.
,
37
(
11
), pp.
1138
1149
.
10.
Ringsberg
,
J. W.
,
Sağlam
,
H.
,
Sarder
,
M. A.
, and
Ulfvarson
,
A.
,
2011
, “
Optimization of Corrugated Shell Plating for Marine Structures
,”
ASME
Paper No. OMAE2011-50216.
11.
Ringsberg
,
J. W.
, and
Hogström
,
P.
,
2013
, “
A Methodology for Comparison and Assessment of Three Crashworthy Side-Shell Structures: The X-Core, Y-Core and Corrugation Panel Structures
,”
Sixth International Conference on Collision and Grounding of Ships
(
ICCGS6
), pp.
323
330
.
12.
Cui
,
L.
,
Kiernan
,
S.
, and
Gilchrist
,
M. D.
,
2009
, “
Designing the Energy Absorption Capacity of Functionally Graded Foam Materials
,”
Mater. Sci. Eng., A
,
507
(
1
), pp.
215
225
.
13.
Ajdari
,
A.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
,
2011
, “
Dynamic Crushing and Energy Absorption of Regular, Irregular and Functionally Graded Cellular Structures
,”
Int. J. Solids Struct.
,
48
(
3
), pp.
506
516
.
14.
Zhou
,
J.
,
Guan
,
Z. W.
, and
Cantwell
,
W. J.
,
2013
, “
The Impact Response of Graded Foam Sandwich Structures
,”
Compos. Struct.
,
97
(1), pp.
370
377
.
15.
Maheo
,
L.
, and
Viot
,
P.
,
2013
, “
Impact on Multi-Layered Polypropylene Foams
,”
Int. J. Impact Eng.
,
53
, pp.
84
93
.
16.
Fan
,
J.
,
Zhang
,
J.
,
Wang
,
Z.
,
Li
,
Z.
, and
Zhao
,
L.
,
2013
, “
Dynamic Crushing Behavior of Random and Functionally Graded Metal Hollow Sphere Foams
,”
Mater. Sci. Eng., A
.,
561
, pp.
352
361
.
17.
Shen
,
C. J.
,
Lu
,
G.
, and
Yu
,
T. X.
,
2013
, “
Dynamic Behavior of Graded Honeycombs—A Finite Element Study
,”
Compos. Struct.
,
98
, pp.
282
293
.
18.
Zhang
,
X. C.
,
An
,
L. Q.
, and
Ding
,
H. M.
,
2014
, “
Dynamic Crushing Behavior and Energy Absorption of Honeycombs With Density Gradient
,”
J. Sandwich Struct. Mater.
,
16
(
2
), pp.
125
147
.
19.
Wang
,
E.
,
Gardner
,
N.
, and
Shukla
,
A.
,
2009
, “
The Blast Resistance of Sandwich Composites With Stepwise Graded Cores
,”
Int. J. Solids Struct.
,
46
(
18
), pp.
3492
3502
.
20.
Liu
,
X.
,
Tian
,
X.
,
Lu
,
T. J.
,
Zhou
,
D.
, and
Liang
,
B.
,
2012
, “
Blast Resistance of Sandwich-Walled Hollow Cylinders With Graded Metallic Foam Cores
,”
Compos. Struct.
,
94
(
8
), pp.
2485
2493
.
21.
Ma
,
G. W.
, and
Ye
,
Z. Q.
,
2007
, “
Energy Absorption of Double-Layer Foam Cladding for Blast Alleviation
,”
Int. J. Impact Eng.
,
34
(
2
), pp.
329
347
.
22.
Shen
,
C. J.
,
Yu
,
T. X.
, and
Lu
,
G.
,
2013
, “
Double Shock Mode in Graded Cellular Rod Under Impact
,”
Int. J. Solids Struct.
,
50
(
1
), pp.
217
233
.
23.
Shen
,
C. J.
,
Lu
,
G.
, and
Yu
,
T. X.
,
2014
, “
Investigation Into the Behavior of a Graded Cellular Rod Under Impact
,”
Int. J. Impact Eng.
,
74
, pp.
92
106
.
24.
Shen
,
C. J.
,
Lu
,
G.
,
Yu
,
T. X.
, and
Ruan
,
D.
,
2015
, “
Dynamic Response of a Cellular Block With Varying Cross-Section
,”
Int. J. Impact Eng.
,
79
, pp.
53
64
.
25.
Chen
,
Y.
,
Chen
,
F.
,
Du
,
Z. P.
,
Wang
,
Y.
, and
Hua
,
H. X.
,
2015
, “
Mitigating Performance of Elastic Graded Polymer Foam Coating Subjected to Underwater Shock
,”
Composites Part B
,
69
, pp.
484
495
.
26.
Chen
,
Y.
,
Chen
,
F.
,
Zhang
,
W.
,
Du
,
Z. P.
, and
Hua
,
H. X.
,
2016
, “
Transient Underwater Shock Response of Sacrificed Coating With Continuous Density Graded Foam Core
,”
Composites Part B
,
98
, pp.
297
307
.
27.
Nakamura
,
T.
,
Yim
,
S. C.
, and
Mizutani
,
N.
,
2013
, “
Three-Dimensional Fluid-Structure-Sediment Interaction Modeling With Application to Local Scouring Around a Movable Cylinder
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
3
), p.
031105
.
28.
Taylor
,
G. I.
,
1963
, “
The Pressure and Impulse of Submarine Explosion Waves on Plates
,”
The Scientific Papers of G.I. Taylor
, Vol.
III
,
Cambridge University Press
,
Cambridge, UK
, pp.
287
303
.
29.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2005
, “
One-Dimensional Response of Sandwich Plates to Underwater Shock Loading
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2347
2383
.
30.
Kennard
,
E. H.
,
1943
, “
Cavitation in an Elastic Liquid
,”
Phys. Rev.
,
63
(
5–6
), p.
172
.
31.
McMeeking
,
R. M.
,
Spuskanyuk
,
A. V.
,
He
,
M. Y.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2008
, “
An Analytical Model for the Response to Water Blast of Unsupported Metallic Sandwich Panels
,”
Int. J. Solids Struct.
,
45
(
2
), pp.
478
496
.
32.
Schiffer
,
A.
,
Tagarielli
,
V. L.
,
Petrinic
,
N.
,
Petrinic
,
N.
, and
Cocks
,
A. C. F.
,
2012
, “
The Response of Rigid Plates to Deep Water Blast: Analytical Models and Finite Element Predictions
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061014
.
33.
Reid
,
S. R.
, and
Peng
,
C.
,
1997
, “
Dynamic Uniaxial Crushing of Wood
,”
Int. J. Impact Eng.
,
19
(
5
), pp.
531
570
.
34.
Yin
,
C.
,
Jin
,
Z.
,
Chen
,
Y.
, and
Hua
,
H.
,
2016
, “
One-Dimensional Response of Single/Double-Layer Cellular Cladding to Water Blast
,”
Int. J. Impact Eng.
,
88
, pp.
125
138
.
35.
Jin
,
Z.
,
Yin
,
C.
,
Chen
,
Y.
, and
Hua
,
H.
,
2015
, “
One-Dimensional Analytical Model for the Response of Elastic Coatings to Water Blast
,”
J. Fluid Struct.
,
59
, pp.
37
56
.
36.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
New York
.
37.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Heinemann
,
London
.
38.
ABAQUS
,
2010
, “
Analysis User's Manual, Version 6.10
,”
Dassault Systèmes Simulia Corp.
,
Providence, RI
.
39.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6
), pp.
1253
1283
.
40.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Princeton University Press
,
Princeton, NJ
.
You do not currently have access to this content.