The motion of a ship/offshore platform at sea is governed by a coupled set of nonlinear differential equations. In general, analytical solutions for such systems do not exist and recourse is taken to time-domain simulations to obtain numerical solutions. Each simulation is not only time consuming but also captures only a single realization of the many possible responses. In a design spiral when the concept design of a ship/platform is being iteratively changed, simulating multiple realizations for each interim design is impractical. An analytical approach is preferable as it provides the answer almost instantaneously and does not suffer from the drawback of requiring multiple realizations for statistical confidence. Analytical solutions only exist for simple systems, and hence, there is a need to simplify the nonlinear coupled differential equations into a simplified one degree-of-freedom (DOF) system. While simplified methods make the problem tenable, it is important to check that the system still reflects the dynamics of the complicated system. This paper systematically describes two of the popular simplified parametric roll models in the literature: Volterra GM and improved Grim effective wave (IGEW) roll models. A correction to the existing Volterra GM model described in current literature is proposed to more accurately capture the restoring forces. The simulated roll motion from each model is compared against a corresponding simulation from a nonlinear coupled time-domain simulation tool to check its veracity. Finally, the extent to which each of the models captures the nonlinear phenomenon accurately is discussed in detail.

References

References
1.
Somayajula
,
A.
, and
Falzarano
,
J.
,
2015
, “
Large-Amplitude Time-Domain Simulation Tool for Marine and Offshore Motion Prediction
,”
Mar. Syst. Ocean Technol.
,
10
(
1
), pp.
1
17
.
2.
Paulling
,
J. R.
,
1961
, “
The Transverse Stability of a Ship in a Longitudinal Seaway
,”
J. Ship Res.
,
4
(
4
), pp.
37
49
.
3.
Neves
,
M. A.
, and
Rodriguez
,
C.
,
2005
, “
A Coupled Third Order Model of Roll Parametric Resonance
,”
Maritime Transportation and Exploitation of Ocean and Coastal Resources—Volume 1: Vessels for Maritime Transportation
,
C. G.
Soares
,
Y.
Garbatov
, and
N.
Fonseca
, eds.,
Taylor and Francis Group Plc
,
London
, pp.
243
253
.
4.
Neves
,
M. A.
, and
Rodríguez
,
C. A.
,
2007
, “
Influence of Non-Linearities on the Limits of Stability of Ships Rolling in Head Seas
,”
Ocean Eng.
,
34
(
11
), pp.
1618
1630
.
5.
Bulian
,
G.
,
2006
, “
Development of Analytical Nonlinear Models for Parametric Roll and Hydrostatic Restoring Variations in Regular and Irregular Waves
,”
Ph.D. thesis
, Università degli studi di trieste, Trieste, Italy.
6.
Spyrou
,
K. J.
,
Tigkas
,
I.
,
Scanferla
,
G.
, and
Gavriilidis
,
N.
,
2005
, “
Problems and Capabilities in the Assessment of Parametric Rolling
,”
10th International Ship Stability Workshop
, Vol.
4
, pp.
47
55
.
7.
Spyrou
,
K. J.
,
Tigkas
,
I.
,
Scanferla
,
G.
,
Pallikaropoulos
,
N.
, and
Themelis
,
N.
,
2008
, “
Prediction Potential of the Parametric Rolling Behaviour of a Post-Panamax Containership
,”
Ocean Eng.
,
35
(
11–12
), pp.
1235
1244
.
8.
Moideen
,
H.
,
Falzarano
,
J. M.
, and
Sharma
,
S.
,
2012
, “
Parametric Roll of Container Ships in Head Waves
,”
Int. J. Ocean Syst. Eng.
,
2
(
4
), pp.
239
255
.
9.
Moideen
,
H.
,
Somayajula
,
A.
, and
Falzarano
,
J. M.
,
2013
, “
Parametric Roll of High Speed Ships in Regular Waves
,”
ASME
Paper No. OMAE2013-11602.
10.
Grim
,
O.
,
1961
, “
Beitrag zu dem Problem der Sicherheit des Schiffes im Seegang
,”
Schiff Hafen
,
6
, pp.
490
497
.
11.
Umeda
,
N.
,
Hashimoto
,
H.
, and
Vassalos
,
D.
,
2004
, “
Nonlinear Dynamics on Parametric Roll Resonance With Realistic Numerical Modelling
,”
Int. Shipbuild. Prog.
,
51
(
2
), pp.
205
220
.
12.
Hashimoto
,
H.
, and
Umeda
,
N.
,
2006
, “
Experimental and Numerical Studies on Parametric Roll of a Post-Panamax Container Ship in Irregular Waves
,”
9th International Conference on Stability of Ships and Ocean Vehicles
, Rio de Janeiro, Brazil, Vol. 1, pp.
181
190
.
13.
Bulian
,
G.
,
Francescutto
,
A.
,
Umeda
,
N.
, and
Hashimoto
,
H.
,
2008
, “
Qualitative and Quantitative Characteristics of Parametric Ship Rolling in Random Waves in the Light of Physical Model Experiments
,”
Ocean Eng.
,
35
(
17–18
), pp.
1661
1675
.
14.
Hashimoto
,
H.
,
Umeda
,
N.
,
Ogawa
,
Y.
,
Taguchi
,
H.
,
Iseki
,
T.
,
Bulian
,
G.
,
Ishida
,
S.
,
Toki
,
N.
, and
Matsuda
,
A.
,
2008
, “
Prediction Methods for Parametric Rolling With Forward Velocity and Their Validation—Final Report of SCAPE Committee (Part 2)
,”
6th Osaka Colloquium on Seakeeping and Stability of Ships
, pp.
265
275
.
15.
Hua
,
J.
,
Wang
,
W.
, and
Chang
,
J.
,
1999
, “
A Representation of GM-Variation in Waves by the Volterra System
,”
J. Mar. Sci. Technol.
,
7
(
2
), pp.
94
100
.
16.
Moideen
,
H.
,
Somayajula
,
A.
, and
Falzarano
,
J. M. J.
,
2014
, “
Application of Volterra Series Analysis for Parametric Rolling in Irregular Seas
,”
J. Ship Res.
,
58
(
2
), pp.
97
105
.
17.
Somayajula
,
A.
,
Guha
,
A.
,
Falzarano
,
J.
,
Chun
,
H.-H.
, and
Jung
,
K. H.
,
2014
, “
Added Resistance and Parametric Roll Prediction as a Design Criteria for Energy Efficient Ships
,”
Int. J. Ocean Syst. Eng.
,
4
(
2
), pp.
117
136
.
18.
Somayajula
,
A.
, and
Falzarano
,
J. M.
,
2014
, “
Non-Linear Dynamics of Parametric Roll of Container Ship in Irregular Seas
,”
ASME
Paper No. OMAE2014-24186.
19.
Guha
,
A.
, and
Falzarano
,
J.
,
2015
, “
The Effect of Hull Emergence Angle on the Near Field Formulation of Added Resistance
,”
Ocean Eng.
,
105
, pp.
10
24
.
20.
Guha
,
A.
, and
Falzarano
,
J. M.
,
2015
, “
Estimation of Hydrodynamic Forces and Motion of Ships With Steady Forward Speed
,”
Int. Shipbuild. Prog.
,
62
(
3–4
), pp.
113
138
.
21.
Guha
,
A.
,
Somayajula
,
A.
, and
Falzarano
,
J.
,
2016
, “
Time Domain Simulation of Large Amplitude Motions in Shallow Water
,”
21st SNAME Offshore Symposium
,
Society of Naval Architects and Marine Engineers
,
Houston, TX
.
22.
Somayajula
,
A.
, and
Falzarano
,
J. M.
,
2015
, “
Validation of Volterra Series Approach for Modelling Parametric Rolling of Ships
,”
ASME
Paper No. OMAE2015-41467.
23.
Moideen
,
H.
,
2010
, “
Prediction of Parametric Roll of Ships in Regular and Irregular Sea
,”
Master's thesis
, Texas A&M University, College Station, TX.
24.
France
,
W.
,
Levadou
,
M.
,
Treakle
,
T. W.
,
Paulling
,
J. R.
,
Michel
,
R. K.
, and
Moore
,
C.
,
2003
, “
An Investigation of Head-Sea Parametric Rolling and Its Influence on Container Lashing Systems
,”
Mar. Technol.
,
40
(
1
), pp.
1
19
.
25.
Webster
,
W.
,
1989
, “
Motion in Regular Waves—Transverse Motions
,”
Principles of Naval Architecture
, Vol.
III
,
E.
Lewis
, ed.,
SNAME
,
Jersey City, NJ
.
26.
Somayajula
,
A.
, and
Falzarano
,
J.
, “
Critical Assessment of Reverse-MISO Techniques for System Identification of Coupled Roll Motion of Ships
,”
J. Mar. Sci. Technol.
(published online).
27.
Somayajula
,
A.
, and
Falzarano
,
J.
,
2016
, “
Estimation of Roll Motion Parameters Using R-MISO System Identification Technique
,”
26th International Offshore and Polar Engineering
(
ISOPE 2016
) Conference, Rhodes, Greece, June 26–July 2,
J. S.
Chung
,
M.
Muskulus
,
T.
Kokkinis
, and
A. M.
Wang
, eds., International Society of Offshore and Polar Engineers (ISOPE), Cupertino, CA, Vol.
3
, pp.
568
574
.
28.
Himeno
,
Y.
,
1981
, “
Prediction of Ship Roll Damping—A State of the Art
,” The University of Michigan, Ann Arbor, MI,
Technical Report No. 239
.
29.
Falzarano
,
J.
,
Somayajula
,
A.
, and
Seah
,
R.
,
2015
, “
An Overview of the Prediction Methods for Roll Damping of Ships
,”
Ocean Syst. Eng.
,
5
(
2
), pp.
55
76
.
30.
Roberts
,
J.
,
1982
, “
The Effect of Parametric Excitation on Ship Rolling Motion in Random Waves
,”
J. Ship Res.
,
26
(
4
), pp.
246
253
.
31.
Bulian
,
G.
,
2008
, “
On an Improved Grim Effective Wave
,”
Ocean Eng.
,
35
(
17
), pp.
1811
1825
.
32.
Bulian
,
G.
,
2005
, “
Nonlinear Parametric Rolling in Regular Waves—A General Procedure for the Analytical Approximation of the GZ Curve and Its Use in Time Domain Simulations
,”
Ocean Eng.
,
32
(
3–4
), pp.
309
330
.
33.
Silva
,
S. R. E.
,
Soares
,
C. G.
,
Turk
,
A.
,
Prpic-Orsic
,
J.
, and
Uzunoglu
,
E.
,
2010
, “
Experimental Assessment of the Parametric Rolling on a C11 Class Containership
,”
HYDRALAB III
Joint User Meeting.
34.
Belenky
,
V. L.
,
Weems
,
K. M.
,
Lin
,
W.-m.
, and
Paulling
,
J. R.
,
2011
, “
Probabilistic Analysis of Roll Parametric Resonance in Head Seas
,”
Contemporary Ideas on Ship Stability and Capsizing in Waves
, Vol. 97, M. Almeida Santos Neves, V. L. Belenky, J. O. Kat, K. Spyrou, and N. Umeda, eds., Springer, Dordrecht, The Netherlands, pp.
555
569
.
35.
Wheeler
,
J. D.
,
1970
, “
Method for Calculating Forces Produced by Irregular Waves
,”
J. Pet. Technol.
,
249
, pp.
359
367
.
You do not currently have access to this content.