This work investigates the hydrodynamic effects of introducing interceptors on fast vessels. Interceptors are vertical flat blades installed at the bottom of the stern vessel. They cause changes in pressure magnitudes around the vessel bottom and especially at the end of the hull where they are located. The pressure variations have an effect on resistance, draft height, and lifting forces which may result in a better control of trim. This work uses a combination of computational fluid dynamics (CFD) and ultrareduced experimental tests. The investigation applies the Reynolds-averaged Navier–Stokes (RANS) equations to model the flow around the ultrareduced model with interceptors with different heights. Our model is analyzed based on a finite-volume method using dynamic mesh. The boat motion is only with two degrees-of-freedom. The results show that the interceptor causes an intense pressure gradient, decreasing the wet surface of the vessel and, quite surprisingly, the resistance. At last, this paper shows that, within a range, a better trim control is possible. The height of the interceptor has an important effect on interceptor efficiency, and it should be especially selected according to the length of the vessel and boundary layer thickness at the transom. The ultrareduced model tests were performed in the Current Channel of the Laboratory of Waves and Current of COPPE/UFRJ (LOC in Portuguese acronym).

References

References
1.
Blount
,
D. L.
, and
Codega
,
L. T.
,
1992
, “
Dynamic Stability of Planing Boats
,”
Mar. Technol.
,
29
(
1
), pp.
4
12
.
2.
Zeraatgar
,
H.
, and
Rostami
,
A. B.
,
2012
, “
An Investigation on Ship Operability Versus Equipment Operability in Irregular Waves
,”
Brodogradnja
,
63
(
1
), pp.
30
34
.
3.
Faltinsen
,
O.
,
2005
,
Hydrodynamics of High Speed Marine Vehicles
,
Cambridge University Press
,
Cambridge, UK
, Chap. 10.
4.
Li
,
P. Y.
,
Qiu
,
Y. M.
, and
Gu
,
M. T.
,
2002
, “
Study of Trimaran Wave Making Resistance With Numerical Calculation and Experiments
,”
J. Hydrodyn.
,
14
(
2
), pp.
99
105
.
5.
Hoekstra
,
M.
,
1999
, “
Numerical Simulation of Ship Stern Flows With a Space-Marching Navier–Stokes Method
,” Ph.D. thesis, Technical University of Delft, Delft, The Netherlands.
6.
van der Ploeg
,
A.
,
Eca
,
L.
, and
Hoekstra
,
M.
,
2000
, “
Combining Accuracy and Efficiency With Robustness in Ship Stern Flow Calculation
,”
23rd Symposium on Naval Hydrodynamics
, Val de Reuil, France, Sept. 17–22, pp.
882
896
.
7.
Raven
,
H. C.
, and
van Brummelen
,
E. H.
,
1999
, “
A New Approach to Computing Steady Free-Surface Viscous Flow Problems
,” 1st
MARNET-CFD
Workshop, Barcelona, Spain, p. 4.
8.
Patel
,
P. K.
, and
Premchand
,
M.
,
2015
, “
Numerical Investigation of the Influence of Water Depth on Ship Resistance
,”
Int. J. Comput. Appl.
,
116
(
17
), pp.
10
17
.
9.
Insel
,
M.
,
1990
, “
Numerical Simulation of Ship Stern Flows With a Space-Marching Navier–Stokes Method
,” Ph.D. thesis, University of Southampton, Southampton, UK.
10.
Savitsky
,
D.
,
1964
, “
Hydrodynamic Design of Planing Hulls
,”
Mar. Technol.
,
1
(
1
), pp.
71
95
.
11.
Zeraatgar
,
H.
,
BakhshandehRostami
,
A.
, and
Nazari
,
A.
,
2012
, “
A Study on Performance of Planing-Wing Hybrid Craft
,”
Pol. Marit. Res.
,
19
(
4
), pp.
16
22
.
12.
Ghadimi
,
P.
,
BakhshandehRostami
,
A.
, and
Jafarkazemi
,
F.
,
2012
, “
Aerodynamic Analysis of the Boundary Layer Region of Symmetric Airfoils at Ground Proximity
,”
Aerosp. Sci. Technol.
,
17
(
1
), pp.
7
20
.
13.
De la Cruz
,
J. M.
,
Aranda
,
J.
,
Giron-Sierra
,
J. M.
,
Velasco
,
F.
,
Esteban
,
S.
,
Diaz
,
J. M.
, and
de Andres-Toro
,
B.
,
2004
, “
Improving the Comfort of a Fast Ferry
,”
IEEE Control Syst. Mag.
,
24
(
2
), pp.
47
60
.
14.
Savitsky
,
D.
, and
Brown
,
P. W.
,
1976
, “
Procedures for Hydrodynamic Evaluation of Planing Hulls in Smooth and Rough Water
,”
Mar. Technol.
,
13
(
4
), pp.
381
400
.
15.
Xi
,
H.
, and
Sun
,
J.
,
2005
, “
Vertical Plane Motion of High Speed Planing Vessels With Controllable Transom Flaps: Modeling and Control
,”
IFAC Proc.
,
38
(
1
), pp.
13
18
.
16.
Molini
,
A.
, and
Brizzolara
,
S.
,
2005
, “
Hydrodynamics of Interceptors: A Fundamental Study
,”
International Conference on Marine Research and Transportation, ICMRT, Ischia, Italy
, Vol.
1
, p. 8.
17.
Cave
,
W. L.
, and
Cusanelli
,
D. S.
,
1993
, “
Effect of Stern Flaps on Powering Performance of the FFG-7 Class
,”
Mar. Technol.
,
30
(
1
), pp.
39
50
.
18.
Tasi
,
F. J.
, and
Hwang
,
J. L.
,
2004
, “
Study on the Compound Effects of Interceptor With Stern Flap for Two Fast Monohulls
,” IEEE Xplore Conference:
MTTS/IEEE
Techno-Ocean’04, Oceans'04, Taiwan, Nov. 9–12, Vol.
2
, pp.
1023
1028
.
19.
Peláez
,
G.
,
Martín
,
E.
,
Lamas
,
A. M.
,
Ulloa
,
A. F.
, and
Prieto
,
D.
,
2010
, “
Preliminary Study of a New Stern Device to Improve Efficiency in a Fishing Vessel
,”
First International Symposium on Fishing Vessel Energy Efficiency, E-Fishing
, Vigo, Spain, May, Vol.
1
.
20.
Syamsundar
,
S.
, and
Datla
,
R.
,
2008
, “
Performance Prediction of High-Speed Planing Craft With Interceptors Using a Variation of the Savitsky Method
,”
First Chesapeake Power Boat Symposium, Annapolis, MD
, Vol.
11
, pp.
76
84
.
21.
Ghassemi
,
H.
, and
Mansoori
,
M.
,
2011
, “
Interceptor Hydrodynamic Analysis for Handling Trim Control Problems in the High-Speed Crafts
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
11
), pp.
2597
2618
.
22.
Luca
,
D.
, and
Pensa
,
F.
,
2012
, “
Experimental Investigation on Conventional and Unconventional Interceptors
,”
Trans. R. Inst. Nav. Archit. Part B
,
154
, pp.
65
72
.
23.
Mansoori
,
M.
, and
Fernandes
,
A. C.
,
2015
, “
Hydrodynamics of the Interceptor on a 2D Flat Plate by CFD and Experiments
,”
J. Hydrodyn.
,
27
(
6
), pp.
919
933
.
24.
Mansoori
,
M.
, and
Fernandes
,
A. C.
,
2016
, “
The Interceptor Hydrodynamic Analysis for Controlling the Porpoising Instability in High Speed Crafts
,”
J. Appl. Ocean Res.
,
57
, pp.
40
51
.
25.
Rostami
,
A. B.
,
Ghadimi
,
P.
, and
Ghasemi
,
H.
,
2016
, “
Adaptive Viscous–Inviscid Interaction Method for Analysis of Airfoils in Ground Effect
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
6
), pp.
1593
1607
.
26.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamic: The Finite Volume Method
,
Prentice-Hall
,
Harlow, UK
, Chap. 13.
27.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
28.
Ubbink
,
O.
, and
Issa
,
R.
,
1999
, “
A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
153
(
1
), pp.
26
50
.
29.
Gerrits
,
J.
,
2001
, “
Dynamics of Liquid-Filled Spacecraft, Numerical Simulation of Coupled Solid-Liquid Dynamics
,” Ph.D. thesis, Netherlands Organisation for Scientific Research, The Hague, The Netherlands.
30.
Pirzadeh
,
S. Z.
,
1999
, “
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing and Grid Movement
,”
AIAA
Paper No. 99-3255.
31.
Mirsajedi
,
S. M.
, and
Karimian
,
S. M. H.
,
2005
, “
A Multizone Moving Mesh Algorithm for Simulation of Flow Around a Rigid Body With Arbitrary Motion
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
297
304
.
32.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
, Chap. 12.
33.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
34.
Cosner
,
R. R.
,
Oberkampf
,
W. L.
,
Rumsey
,
C. L.
,
Rahaim
,
C. P.
, and
Shih
,
T. I.
,
2006
, “
AIAA Committee on Standards for Computational Fluid Dynamics: Status and Plans
,”
AIAA
Paper No. 2006-0889.
35.
Eslamdoost
,
A.
,
Larsson
,
L.
, and
Bensow
,
R.
,
2014
, “
Waterjet Propulsion and Thrust Deduction
,”
J. Ship Res.
,
58
(
4
), pp.
1
15
.
You do not currently have access to this content.