This paper proposes a methodology for a statistical analysis of uniaxial compressive strength and applies it to full-scale data collected in the Svalbard area from 2005 to 2011. A total of 894 samples were compressed over 7 years of field investigation. The ice was mainly from frozen fjords on Svalbard and also from the Barents Sea and the Arctic Ocean. The analysis consisted in determining the most appropriate distribution for level ice strength according to the sample orientation, the time of the year (which would then relate to the brine configuration in the ice), and the failure mode. Six groups (horizontal, vertical, early, late, brittle, and ductile) were defined, and the gamma, two-parameter Weibull, and lognormal distributions were compared for each group. The Weibull parameters (shape and scale) were estimated with the method of moments and the method of maximum likelihood. The two methods agreed well. A visual observation of quantiles–quantiles plots (QQ-plots) combined with a linear regression and a Kolmogorov–Smirnov (KS) test were conducted to determine the best fitting distribution. Neither the season nor the failure mode appeared to influence the determination of a statistical distribution, contrary to the sample orientation. However, it appeared that the lognormal distribution was a best fit for the failure mode and season groups, whereas the gamma and the Weibull were the best candidates for the vertical and horizontal samples, respectively.

References

References
1.
Timco
,
G. W.
, and
Weeks
,
W. F.
,
2010
, “
A Review of the Engineering Properties of Ice
,”
Cold Reg. Sci. Technol.
,
60
(
2
), pp.
107
129
.
2.
Moslet
,
P. O.
,
2007
, “
Field Testing of Uniaxial Compression Test of Columnar Ice
,”
Cold Reg. Sci. Technol.
,
48
(
1
), pp.
1
14
.
3.
Strub-Klein
,
L.
, and
Høyland
,
K. V.
,
2012
, “
Spatial and Temporal Distributions of Level Ice Properties: Experiments and Thermo-Mechanical Analysis
,”
Cold Reg. Sci. Technol.
,
71
, pp.
11
22
.
4.
Onishchenko
,
D.
,
2009
, “
Analytical Approach to the Calculation of the Design Values of the Loads Associated With the Discrete Ice Features
,”
20th International Conference on Port and Ocean Engineering (POAC)
, Luleå, Sweden, Paper No. POAC09-126.
5.
Zvyagin
,
P.
, and
Sazanov
,
K.
,
2014
, “
Analysis and Probabilistic Modeling of the Stationary Ice Loads Stochastic Process With Lognormal Distribution
,”
ASME
Paper No. OMAE2014-24713.
6.
ISO
,
2010
, “
Petroleum and Gas Industries—Arctic Offshore Structures
,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO 19906 TC67.
7.
Takeuchi
,
T.
,
Enoki
,
K.
,
Okamoto
,
S.
, and
Saeki
,
H.
,
1993
, “
On the Characteristics of Uniaxial Compressive Strength and Elastic Modulus of Natural Sea Ice
,”
3rd International Offshore and Polar Engineering Conference
, Singapore, Paper No. ISOPE-I-93-185.
8.
Surkov
,
G. A.
, and
Truskov
,
P. A.
,
1993
, “
Analysis of Spatial Heterogeneity of Ultimate Ice Compressive Strength
,”
3rd International Offshore and Polar Engineering Conference
, Singapore, Paper No. ISOPE-I93-187.
9.
Shafrova
,
S.
, and
Moslet
,
P. O.
,
2006
, “
In-Situ Uniaxial Compression Tests of the Level Ice: Part II—Ice Strength Spatial Distribution
,”
ASME
Paper No. OMAE2006-92451.
10.
Truskov
,
P. A.
,
Surkov
,
G. A.
, and
Astafiev
,
V. N.
,
1996
, “
3-D Variability of Sea Ice Uniaxial Compressive Strength
,”
13th IAHR International Symposium on Ice
, Beijing, China, pp.
94
101
.
11.
Takeuchi
,
T.
,
Akagawa
,
S.
,
Kioka
,
S.
,
Terashima
,
T.
, and
Kawai
,
T.
,
2008
, “
Randomness of Strength on Natural Sea Ice
,”
19th IAHR International Symposium on Ice
, Vancouver, BC, Canada, pp.
1185
1193
.
12.
Sodhi
,
D. S.
, and
Chin
,
S. N.
,
1992
, “
Indentation Tests Using Urea Ice and Segmented Indentors
,”
12th International Offshore Mechanics and Arctic Engineering Conference (OMAE), Arctic/Polar Technology
, ASME, New York, Vol.
4
, pp.
223
230
.
13.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
, pp.
293
297
.
14.
Taylor
,
R.
, and
Jordaan
,
I.
,
2012
, “
Probabilistic Fracture Mechanics Applied to Compressive Ice Failure
,”
22nd International Offshore and Polar Engineering Conference
, Rhodes, Greece, June 17–22, Paper No. ISOPE-I-12-184.
15.
Wang
,
H.
, and
Song
,
Y.
,
2010
, “
Reliability Models and Service Life Estimation of Concrete Structure Under Freeze-Thaw Action
,”
20th International Offshore and Polar Engineering Conference
, Beijing, China, Paper No. ISOPE-I-10-578.
16.
Lai
,
Y.
,
Li
,
S.
,
Qi
,
J.
,
Gao
,
Z.
, and
Chang
,
X.
,
2008
, “
Strength Distributions of Warm Frozen Clay and Its Stochastic Damage Constitutive Model
,”
Cold Reg. Sci. Technol.
,
53
(
2
), pp.
200
215
.
17.
Basu
,
B.
,
Tiwari
,
D.
,
Kundu
,
D.
, and
Prasad
,
R.
,
2009
, “
Is Weibull Distribution the Most Appropriate Statistical Strength Distribution for Brittle Materials?
,”
Ceram. Int.
,
35
(
1
), pp.
237
246
.
18.
Upton
,
G.
, and
Cook
,
I.
,
2008
,
A Dictionary of Statistics
,
2nd ed.
,
Oxford University Press
,
Oxford, UK
.
19.
Walpole
,
R. E.
,
Myers
,
R. E.
,
Myers
,
S. L.
, and
Ye
,
K.
,
2002
,
Probability and Statistics for Engineers and Scientists
,
7th ed.
,
Pearson Prentice Hall, Pearson Education
,
Upper Saddle River, NJ.
20.
Chatfield
,
C.
,
1978
,
Statistics for Technology. A Course in Applied Statistics
,
2nd ed.
,
Chapman and Hall
,
London
.
21.
Rowntree
,
D.
,
2004
,
Statistics Without Tears: A Primer for Non-Mathematicians
,
Pearson/A&B
,
Boston, MA
.
22.
Cohen
,
Y.
, and
Cohen
,
J. Y.
,
2008
,
Statistics and Data
,
Wiley
,
Chichester, Great Britain
.
23.
Nylander
,
J. E.
,
1962
, “
Statistical Distributions in Reliability. Reliability and Quality Control
,”
IRE Trans.
,
23
, pp.
43
53
.
24.
Husak
,
G. J.
,
Michaelsen
,
J.
, and
Funk
,
C.
,
2007
, “
Use of the Gamma Distribution to Represent Monthly Rainfall in Africa or Drought Monitoring Applications
,”
Int. J. Climatol.
,
27
(
7
), pp.
935
944
.
25.
Brawn
,
D.
, and
Upton
,
G.
,
2008
, “
Estimation of Atmospheric Gamma Drop Size Distribution Using Disdrometer Data
,”
Atmos. Res.
,
87
(
1
), pp.
66
79
.
26.
Yue
,
S.
,
Ouarda
,
T. B. M. J.
, and
Bobée
,
B.
,
2001
, “
A Review of Bivariate Gamma Distributions for Hydrological Application
,”
J. Hydrol.
,
246
(
1
), pp.
1
18
.
27.
Andersons
,
J.
,
Joffe
,
R.
,
Hojo
,
M.
, and
Ochiai
,
S.
,
2002
, “
Glass Fibre Strength Distribution Determined by Common Experimental Methods
,”
Compos. Sci. Technol.
,
62
(
1
), pp.
131
145
.
28.
Kilinc
,
K.
,
Celik
,
A. O.
,
Tuncan
,
M.
,
Tuncan
,
A.
,
Arslan
,
G.
, and
Arioz
,
O.
,
2012
, “
Statistical Distributions of In Situ Microcore Concrete Strength
,”
Constr. Build. Mater.
,
26
(
1
), pp.
393
403
.
29.
Al-Fawzan
,
M. A.
,
2000
, “
Methods for Estimating the Parameters of the Weibull Distribution
,” InterStat, Virginia Tech, Blacksburg, VA, http://interstat.statjournals.net/YEAR/2000/articles/0010001.pdf
30.
Razali
,
A. M.
,
Salih
,
A. A.
, and
Mahdi
,
A. A.
,
2009
, “
Estimation Accuracy of Weibull Distribution Parameters
,”
J. Appl. Sci. Res.
,
5
(
7
), pp.
790
795
.
31.
Ochi
,
M. K.
,
2005
,
Ocean Waves: The Stochastic Approach
(Cambridge Ocean Technology Series, Vol.
6
),
Cambridge University Press
,
Cambridge, UK
.
32.
Wilk
,
M. B.
, and
Gnanadesikan
,
R.
,
1968
, “
Probability Plotting Methods for the Analysis of Data
,”
Biometrika
,
55
(
1
), pp.
1
17
.
33.
Chambers
,
J. M.
,
1983
,
Graphical Methods for Data Analysis
,
Wadsworth International Group
,
Belmont, CA
.
34.
Fowlkes
,
E. B.
,
1987
,
A Folio of Distributions: A Collection of Theoretical Quantile-Quantile Plots
,
Taylor & Francis
,
Abingdon, UK
.
35.
Shafrova
,
S.
, and
Moslet
,
P. O.
,
2006
, “
In-Situ Uniaxial Compression Tests of the Level Ice: Part I—Ice Strength Variability Versus Length Scale
,”
ASME
Paper No. OMAE2006-92450.
36.
Høyland
,
K. V.
,
2009
, “
Ice Thickness, Growth and Salinity in Van Mijenfjorden, Svalbard, Norway
,”
Polar Res.
,
28
(
3
), pp.
339
352
.
37.
Høyland
,
K. V.
,
2007
, “
Morphology and Small-Scale Strength of Ridges in the North-Western Barents Sea
,”
Cold Reg. Sci. Technol.
,
48
(
3
), pp.
169
187
.
38.
Shafrova
,
S.
, and
Høyland
,
K. V.
,
2008
, “
Morphology and 2D Spatial Strength Distribution in Two Arctic First-Year Sea Ice Ridges
,”
Cold Reg. Sci. Technol.
,
51
(
1
), pp.
38
55
.
39.
Gabrielsen
,
M.
,
2007
, “
Laboratory Investigation of Sea Ice Relaxation
,” Master's thesis, The Norwegian University of Technology (NTNU), Trondheim, Norway, and The University Centre on Svalbard (UNIS), Longyearbyen, Norway.
40.
Schulson
,
E.
,
1997
, “
The Brittle Failure of Ice Under Compression
,”
J. Phys. Chem. B
,
101
(
32
), pp.
6254
6258
.
41.
Timco
,
G. W.
, and
Frederking
,
R. M. W.
,
1990
, “
Compressive Strength of Sea Ice Sheets
,”
Cold Reg. Sci. Technol.
,
17
(
3
), pp.
227
240
.
You do not currently have access to this content.