A numerical strategy is developed and used to investigate the localized lateral buckling of circular pipelines under thermal loading and friction. The constitutive relations for circular pipelines are derived for thermal stresses and finite strain based on a hyperelastic constitutive model. The prebuckling lateral expansion and localized postbuckling deformation are investigated. A critical included angle for circular profiles is studied. Beyond the critical included angle, increasing the included angle of the pipeline or changing the boundary conditions does not influence the localized buckling behavior. Parametric studies are performed and the results are validated with ansys.

References

References
1.
Zhao
,
T.
,
Duan
,
M.
,
Pan
,
X.
, and
Feng
,
X.
,
2010
, “
Lateral Buckling of Non-Trenched High Temperature Pipelines With Pipelay Imperfections
,”
Pet. Sci.
,
7
(
1
), pp.
123
131
.
2.
Kerr
,
A. D.
,
1978
, “
Analysis of Thermal Track Buckling in Lateral Plane
,”
Acta Mech.
,
30
(
1–2
), pp.
17
50
.
3.
Kerr
,
A. D.
,
1979
, “
On Thermal Buckling of Straight Railroad Tracks and the Effect of Track Length on the Track Response
,”
Rail Int.
,
9
, pp.
759
768
.
4.
Kerr
,
A. D.
,
1980
, “
An Improved Analysis for Thermal Track Buckling
,”
Int. J. Non-Linear Mech.
,
15
(
2
), pp.
99
114
.
5.
Kerr
,
A. D.
, and
Accorsi
,
M. L.
,
1985
, “
Generalization of the Equations for Frame-Type Structures; A Variational Approach
,”
Acta Mech.
,
56
(
1–2
), pp.
55
73
.
6.
Donley
,
M. G.
, and
Kerr
,
A. D.
,
1987
, “
Thermal Buckling of Curved Railroad Tracks
,”
Int. J. Non-Linear Mech.
,
22
(
3
), pp.
175
192
.
7.
Grissom
,
G. T.
, and
Kerr
,
A. D.
,
2006
, “
Analysis of Lateral Track Buckling Using New Frame-Type Equations
,”
Int. J. Mech. Sci.
,
48
(
1
), pp.
21
32
.
8.
Kish
,
A.
,
Samavedam
,
G.
, and
Jeong
,
D.
,
1982
,
Analysis of Thermal Buckling Tests on U.S. Railroads
,
U.S. Department of Transportation
,
Washington, DC
.
9.
Kish
,
A.
,
Samavedam
,
G.
, and
Jeong
,
D.
,
1985
,
Influence of Vehicle Induced Loads on the Lateral Stability of CWR Track
,
U.S. Department of Transportation
,
Washington, DC
.
10.
Samavedam
,
G.
,
Kish
,
A.
, and
Jeong
,
D.
,
1986
,
Experimental Investigations of Dynamic Buckling of CWR Tracks
,
U.S. Department of Transportation
,
Washington, DC
.
11.
Kish
,
A.
, and
Samavedam
,
G.
,
2013
,
Track Buckling Prevention: Theory, Safety Concepts, and Applications
,
U.S. Department of Transportation
,
Washington, DC
.
12.
Croft
,
J. G. A.
,
1997
, “
A Simplified Analysis of Imperfect Thermally Buckled Subsea Pipelines
,”
International Offshore and Polar Engineering
, pp.
666
676
.
13.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1981
, “
On Localized Thermal Track Buckling
,”
Int. J. Mech. Sci.
,
23
(
10
), pp.
577
587
.
14.
Nielsen
,
N. J. R.
,
Lyndberg
,
B.
, and
Pedersen
,
P. T.
,
1990
, “
Upheaval Buckling Failures of Insulated Buried Pipelines: A Case Story
,”
Offshore Technology Conference
, Houston, TX, pp.
581
592
.
15.
Schaminee
,
P. E. L.
,
Zorn
,
N. F.
, and
Schotman
,
G. J. M.
,
1990
, “
Soil Response for Pipeline Upheaval Buckling Analyses: Full-Scale Laboratory Tests and Modelling
,”
Offshore Technology Conference
, Houston, TX, pp.
563
572
.
16.
Karampour
,
H.
, and
Albermani
,
F.
,
2014
, “
Experimental and Numerical Investigations of Buckle Interaction in Subsea Pipelines
,”
Eng. Struct.
,
66
, pp.
81
88
.
17.
Yuan
,
F.
,
Wang
,
L.
,
Guo
,
Z.
, and
Xie
,
Y.
,
2012
, “
A Refined Analytical Model for Landslide or Debris Flow Impact on Pipelines—Part II: Embedded Pipelines
,”
Appl. Ocean Res.
,
35
, pp.
105
114
.
18.
Yuan
,
F.
,
Wang
,
L.
,
Guo
,
Z.
, and
Shi
,
R.
,
2012
, “
A Refined Analytical Model for Landslide or Debris Flow Impact on Pipelines—Part I: Surface Pipelines
,”
Appl. Ocean Res.
,
35
, pp.
95
104
.
19.
Herlianto
,
I.
,
Chen
,
Q.
, and
Karunakaran
,
D.
,
2011
, “
Lateral Buckling Induced by Trawl Gears Pull-Over Loads on High Temperature/High Pressure Subsea Pipeline
,” Master thesis, University of Stavanger, Stavanger, Norway.
20.
Villarraga
,
J. A.
,
Rodrı́guez
,
J. F.
, and
Martı́nez
,
C.
,
2004
, “
Buried Pipe Modeling With Initial Imperfections
,”
ASME J. Pressure Vessel Technol.
,
126
(
2
), pp.
250
257
.
21.
Taylor
,
N.
, and
Tran
,
V.
,
1996
, “
Experimental and Theoretical Studies in Subsea Pipeline Buckling
,”
Mar. Struct.
,
9
(
2
), pp.
211
257
.
22.
Taylor
,
N.
, and
Tran
,
V.
,
1993
, “
Prop-Imperfection Subsea Pipeline Buckling
,”
Mar. Struct.
,
6
(
4
), pp.
325
358
.
23.
Cheuk
,
C. Y.
,
Take
,
W. A.
,
Bolton
,
M. D.
, and
Oliveira
,
J. R. M. S.
,
2007
, “
Soil Restraint on Buckling Oil and Gas Pipelines Buried in Lumpy Clay Fill
,”
Eng. Struct.
,
29
(
6
), pp.
973
982
.
24.
Peng
,
X. L.
,
Hao
,
H.
,
Li
,
Z. X.
, and
Fan
,
K. Q.
,
2013
, “
Experimental Study on Subsea Pipeline Bedding Condition Assessment Using Wavelet Packet Transform
,”
Eng. Struct.
,
48
, pp.
81
97
.
25.
Zhu
,
J.
,
Attard
,
M. M.
, and
Kellermann
,
D. C.
,
2014
, “
In-Plane Nonlinear Localised Lateral Buckling of Straight Pipelines
,”
Eng. Struct.
,
103
, pp.
37
52
.
26.
ANSYS
,
2010
, “
ANSYS® Academic Research, Release 13.0
,”
ANSYS, Inc.
,
Canonsburg, PA
.
27.
Zhu
,
J.
,
Attard
,
M. M.
, and
Kellermann
,
D. C.
,
2014
, “
In-Plane Nonlinear Buckling of Funicular Arches Including Shear Deformations
,”
Int. J. Struct. Stab. Dyn.
,
15
(
5
), p.
1450073
.
28.
Zhu
,
J.
,
Attard
,
M. M.
, and
Kellermann
,
D. C.
,
2014
, “
In-Plane Nonlinear Buckling of Circular Arches Including Shear Deformations
,”
Arch. Appl. Mech.
,
84
(
12
), pp.
1841
1860
.
29.
Attard
,
M. M.
,
Zhu
,
J.
, and
Kellermann
,
D. C.
,
2013
, “
In-Plane Buckling of Circular Arches and Rings With Shear Deformations
,”
Arch. Appl. Mech.
,
83
(
8
), pp.
1145
1169
.
30.
Attard
,
M. M.
,
Zhu
,
J.
, and
Kellermann
,
D. C.
,
2014
, “
In-Plane Buckling of Prismatic Funicular Arches With Shear Deformations
,”
Arch. Appl. Mech.
,
84
(
5
), pp.
693
713
.
31.
Hobbs
,
R. E.
,
1981
, “
Pipeline Buckling Caused by Axial Loads
,”
J. Constr. Steel Res.
,
1
(
2
), pp.
2
10
.
32.
Chen
,
G.
, and
Baker
,
G.
,
2003
, “
Rayleigh–Ritz Analysis for Localized Buckling of a Strut on a Softening Foundation by Hermite Functions
,”
Int. J. Solids Struct.
,
40
(
26
), pp.
7463
7474
.
33.
Karampour
,
H.
,
Albermani
,
F.
, and
Gross
,
J.
,
2013
, “
On Lateral and Upheaval Buckling of Subsea Pipelines
,”
Eng. Struct.
,
52
, pp.
317
330
.
34.
Maltby
,
T. C.
, and
Calladine
,
C. R.
,
1995
, “
An Investigation Into Upheaval Buckling of Buried Pipelines—II. Theory and Analysis of Experimental Observations
,”
Int. J. Mech. Sci.
,
37
(
9
), pp.
965
983
.
You do not currently have access to this content.