Installation of offshore wind turbines (OWTs) requires careful planning to reduce costs and minimize associated risks. The purpose of this paper is to present a method for assessing the allowable sea states for the initial hammering process (shallow penetrations in the seabed) of a monopile (MP) using a heavy lift floating vessel (HLV) for use in the planning of the operation. This method combines the commonly used installation procedure and the time-domain simulations of the sequential installation activities. The purpose of the time-domain simulation is to quantitatively study the system dynamic responses to identify critical events that may jeopardize the installation and the corresponding limiting response parameters. Based on the allowable limits and the characteristic values of the limiting response parameters, a methodology to find the allowable sea states is proposed. Case studies are presented to show the application of the methodology. The numerical model of the dynamic HLV–MP system includes the coupling between HLV and MP via a gripper device, and soil–MP interaction at different MP penetration depths. It is found that the limiting parameters are the gripper force and the inclination of the MP. The systematic approach proposed herein is general and applies to other marine operations.

References

References
1.
EWEA
,
2014
, “
The European Offshore Wind Industry—Key Trends and Statistics 2013
,” Report,
The European Wind Energy Association
,
Brussels, Belgium
.
2.
Thomsen
,
K.
,
2011
,
Offshore Wind: A Comprehensive Guide to Successful Offshore Wind Farm Installation
,
Academic Press
,
Waltham, MA
.
3.
Ringsberg
,
J. W.
,
Daun
,
V.
, and
Olsson
,
F.
,
2015
, “
Analysis of Impact Loads on a Self-Elevating Unit During Jacking Operation
,”
ASME
Paper No. OMAE2015-41030.
4.
Sarkar
,
A.
, and
Gudmestad
,
O.
,
2013
, “
Study on a New Method for Installing a Monopile and a Fully Integrated Offshore Wind Turbine Structure
,”
Mar. Struct.
,
33
, pp.
160
187
.
5.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2013
, “
Numerical Simulations for Installation of Offshore Wind Turbine Monopiles Using Floating Vessels
,”
ASME
Paper No. OMAE2013-11200
.
6.
Li
,
L.
,
Gao
,
Z.
,
Moan
,
T.
, and
Ormberg
,
H.
,
2014
, “
Analysis of Lifting Operation of a Monopile for an Offshore Wind Turbine Considering Vessel Shielding Effects
,”
Mar. Struct.
,
39
, pp.
287
314
.
7.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Comparative Study of Lifting Operations of Offshore Wind Turbine Monopile and Jacket Substructures Considering Shielding Effects
,”
25th International Offshore and Polar Engineering Conference
, June 21–26, Kona, HI.
8.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2015
, “
Response Analysis of a Nonstationary Lowering Operation for an Offshore Wind Turbine Monopile Substructure
,”
ASME J. Offshore Mech. Arctic Eng.
,
137
(
5
), p.
051902
.
9.
Smith
,
C.
,
2014
, Offshore Piles on the Straight and Narrow, Last accessed on July 15, 2015, http://www.nce.co.uk/news/geotechnical/offshore-piles-on-the-straight-and-narrow/8663331.article.
10.
Strandgaard
,
T.
, and
Vandenbulcke
,
L.
,
2002
, “
Driving Mono-Piles Into Glacial Till
,” IBCs Wind Power Europe.
11.
DNV
,
2011
, “
Marine Operations
,”
General, Det Norske Veritas
,
Oslo, Norway
, Offshore Standard DNV-OS-H101.
12.
MARINTEK
,
2012
,
SIMO—Theory Manual Version 4.0
,
MARINTEK
,
Trondheim, Norway
.
13.
Newman
,
J. N.
,
1974
, “
Second-Order, Slowly-Varying Forces on Vessels in Irregular Waves
,”
International Symposium on the Dynamics of Marine Vehicles and Structures in Waves
, University College, London.
14.
Lee
,
C.
,
1995
,
WAMIT Theory Manual
,
Department of Ocean Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
15.
DNV
,
2010
, “
Environmental Conditions and Environmental Loads
,”
Det Norske Veritas
,
Oslo, Norway
, Recommended Practice DNV-RP-C205.
16.
Albers
,
P.
,
2010
,
Motion Control in Offshore and Dredging
,
Springer Science & Business Media
,
Verlag, Germany
.
17.
Carswell
,
W.
,
Johansson
,
J.
,
Løvholt
,
F.
,
Arwade
,
S.
,
Madshus
,
C.
,
DeGroot
,
D.
, and
Myers
,
A.
,
2015
, “
Foundation Damping and the Dynamics of Offshore Wind Turbine Monopiles
,”
Renewable Energy
,
80
, pp.
724
736
.
18.
Bisoi
,
S.
, and
Haldar
,
S.
,
2014
, “
Dynamic Analysis of Offshore Wind Turbine in Clay Considering Soil Monopile Tower Interaction
,”
Soil Dyn. Earthquake Eng.
,
63
, pp.
19
35
.
19.
Andersen
,
L. V.
,
Vahdatirad
,
M.
,
Sichani
,
M. T.
, and
Sørensen
,
J. D.
,
2012
, “
Natural Frequencies of Wind Turbines on Monopile Foundations in Clayey Soils a Probabilistic Approach
,”
Comput. Geotech.
,
43
, pp.
1
11
.
20.
Gerolymos
,
N.
, and
Gazetas
,
G.
,
2006
, “
Development of Winkler Model for Static and Dynamic Response of Caisson Foundations With Soil and Interface Nonlinearities
,”
Soil Dyn. Earthquake Eng.
,
26
(
5
), pp.
363
376
.
21.
Ong
,
M.
,
Li
,
H.
,
Leira
,
B. J.
, and
Myrhaug
,
D.
,
2013
, “
Dynamic Analysis of Offshore Monopile Wind Turbine Including the Effects of Wind–Wave Loading and Soil Properties
,”
ASME
Paper No. OMAE2013-10527.
22.
DNV
,
2014
, “
Design of Offshore Wind Turbine Structures
,”
Det Norske Veritas
,
Oslo, Norway
, Offshore Standard DNV-OS-J101.
23.
API
,
2007
, “
Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms Working Stress Design
,” American Petroleum Institute, Washington DC, API Recommended Practice 2A-WSD (RP 2A-WSD).
24.
Byrne
,
B.
,
McAdam
,
R.
,
Burd
,
H.
,
Houlsby
,
G.
,
Martin
,
C.
,
Zdravkovi
,
L.
,
Taborda
,
D.
,
Potts
,
D.
,
Jardine
,
R.
, and
Sideri
,
M.
,
2015
, “
New Design Methods for Large Diameter Piles Under Lateral Loading for Offshore Wind Applications
,”
3rd International Symposium on Frontiers in Offshore Geotechnics
(
ISFOG 2015
), Oslo, Norway, June 10–12.
25.
Lesny
,
K.
, and
Wiemann
,
J.
,
2006
, “
Finite-Element-Modelling of Large Diameter Monopiles for Offshore Wind Energy Converters
,”
Geo Congress
, Feb. 26–Mar. 1, Atlanta, GA.
26.
Hededal
,
O.
, and
Klinkvort
,
R. T.
,
2010
, “
A New Elasto-Plastic Spring Element for Cyclic Loading of Piles Using the py Curve Concept
,”
Numerical Methods in Geotechnical Engineering
,
Benz and Nordal
, eds.,
Taylor & Francis Group
,
London
, pp.
883
888
.
27.
Bekken
,
L.
,
2009
, “
Lateral Behavior of Large Diameter Offshore Monopile Foundations for Wind Turbines
,”
Ph.D. thesis
, TU Delft, Delft University of Technology, Netherlands.
28.
Lombardi
,
D.
,
Bhattacharya
,
S.
, and
Wood
,
D. M.
,
2013
, “
Dynamic Soil-Structure Interaction of Monopile Supported Wind Turbines in Cohesive Soil
,”
Soil Dyn. Earthquake Eng.
,
49
, pp.
165
180
.
29.
Vemula
,
N. K.
,
de Vries
,
W.
,
Fischer
,
T.
,
Cordle
,
A.
, and
Schmidt
,
B.
,
2010
, “
Design Solution for the Upwind Reference Offshore Support Structure, Deliverable D4.2.5
,” Technical Report, Project Upwind, WP4: Offshore Foundations and Support Structures.
30.
ANSYS
,
2011
,
The AQWA Reference Manual—Version 14.0.
ANSYS
,
Canonsburg, PA
.
31.
Young-Kwan Kim
,
J.-R. S.
, and
Yoon
,
D.-Y.
,
2012
, “
A Design of Windmill Turbine Installation Vessel Using Jack-Up System
,”
22nd International Offshore and Polar Engineering Conference
, June 17–22, Rhodes, Greece.
32.
Naess
,
A.
,
1984
, “
Technical Note: On a Rational Approach to Extreme Value Analysis
,”
Appl. Ocean Res.
,
6
(
3
), pp.
173
174
.
33.
Naess
,
A.
,
1984
, “
On the Long-Term Statistics of Extremes
,”
Appl. Ocean Res.
,
6
(
4
), pp.
227
228
.
34.
Naess
,
A.
,
Gaidai
,
O.
, and
Teigen
,
P. S.
,
2007
, “
Extreme Response Prediction for Nonlinear Floating Offshore Structures by Monte Carlo Simulation
,”
Appl. Ocean Res.
,
29
(
4
), pp.
221
230
.
35.
IHC
,
2015
, “
IHC Vremac Cylinders—Cylinder Catalogue 210 bar /300 bar
,” Last accessed: May 05, 2015, http://www.ihcvremaccylinders.com/
You do not currently have access to this content.