In recent years, wave energy harvesting systems have received considerable attention as an alternative energy source. Within this class of systems, single-point harvesters are popular at least for preliminary studies and proof-of-concept analyses in particular locations. Unfortunately, the large displacements of a single-point wave energy harvester are described by a set of nonlinear equations. Further, the excitation is often characterized statistically and in terms of a relevant power spectral density (PSD) function. In the context of this complex problem, the development of efficient techniques for the calculation of reliable harvester response statistics is quite desirable, since traditional Monte Carlo techniques involve nontrivial computational cost. The paper proposes a statistical linearization technique for conducting expeditiously random vibration analyses of single-point harvesters. The technique is developed by relying on the determination of a surrogate linear system identified by minimizing the mean square error between the linear system and the nonlinear one. It is shown that the technique can be implemented via an iterative procedure, which allows calculating statistics, PSDs, and probability density functions (PDFs) of the response components. The reliability of the statistical linearization solution is assessed vis-à-vis data from relevant Monte Carlo simulations. This novel approach can be a basis for constructing computationally expeditious assessments of various design alternatives.

References

References
1.
Cruz
,
J.
,
2008
,
Ocean Wave Energy: Current Status and Future Perspectives
,
Springer
,
Berlin
.
2.
Clément
,
A.
,
McCullen
,
P.
,
Falcão
,
A.
,
Fiorentino
,
A.
,
Gardner
,
F.
,
Hammarlund
,
K.
,
Lemonis
,
G.
,
Lewis
,
T.
,
Nielsen
,
K.
,
Petroncini
,
S.
,
Pontes
,
M. T.
,
Schild
,
P.
,
Sjöström
,
B.-O.
,
Sørensen
,
H. C.
, and
Thorpe
,
T.
,
2002
, “
Wave Energy in Europe: Current Status and Perspectives
,”
Renewable Sustainable Energy Rev.
,
6
(
5
), pp.
405
431
.
3.
Falnes
,
J.
,
2007
, “
A Review of Wave-Energy Extraction
,”
Mar. Struct.
,
20
(
4
), pp.
185
201
.
4.
Falcão
,
A. F. d. O.
,
2010
, “
Wave Energy Utilization: A Review of the Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
899
918
.
5.
Budal
,
K.
,
Falnes
,
J.
,
Iversen
,
L. C.
,
Lillebekken
,
P. M.
,
Oltedal
,
G.
,
Hals
,
T.
,
Onshus
,
T.
, and
Høy
,
A. S.
,
1982
, “
The Norwegian Wave-Power Buoy Project
,”
2nd International Symposium on Wave Energy Utilization
,
H.
Berge
, ed.,
Trondheim, Norway
.
6.
Nielsen
,
K.
, and
Smed
,
P. F.
,
1998
, “
Point Absorber—Optimization and Survival Testing
,”
3rd European Wave Energy Conference
,
Patras, Greece
.
7.
Waters
,
R.
,
Stålberg
,
M.
,
Danielsson
,
O.
,
Svensson
,
O.
,
Gustafsson
,
S.
,
Strömstedt
,
E.
,
Eriksson
,
M.
,
Sundberg
,
J.
, and
Leijon
,
M.
,
2007
, “
Experimental Results From Sea Trials of an Offshore Wave Energy System
,”
Appl. Phys. Lett.
,
90
(
3
), p.
034105
.
8.
Elwood
,
D.
,
Schacher
,
A.
,
Rhinefrank
,
K.
,
Prudell
,
J.
,
Yim
,
S.
,
Amon
,
E.
,
Brekken
,
T.
, and
von Jouanne
,
A.
,
2009
, “
Numerical Modeling and Ocean Testing of a Direct-Drive Wave Energy Device Utilizing a Permanent Magnet Linear Generator for Power Take-Off
,”
ASME
Paper No. OMAE2009-79146.
9.
Elwood
,
D.
,
Yim
,
S. C.
,
Prudell
,
J.
,
Stillinger
,
C.
,
von Jouanne
,
A.
,
Brekken
,
T.
,
Brown
,
A.
, and
Paasch
,
R.
,
2010
, “
Design, Construction, and Ocean Testing of a Taut-Moored Dual-Body Wave Energy Converter With a Linear Generator Power Take-Off
,”
Renewable Energy
,
35
(
2
), pp.
348
354
.
10.
Harleman
,
D. R. F.
, and
Shapiro
,
W. C.
,
1960
, “
The Dynamics of a Submerged Moored Sphere in Oscillatory Waves
,”
7th Conference on Coastal Engineering
, pp.
746
765
.
11.
Mavrakos
,
S. A.
,
Katsaounis
,
G. M.
, and
Apostolidis
,
M. S.
,
2009
, “
Effect of Floaters' Geometry on the Performance Characteristics of Tightly Moored Wave Energy Converters
,”
28th International Conference on Ocean, Offshore and Arctic Engineering
,
Honolulu, HI
.
12.
Vicente
,
P. C.
,
Falcão
,
A. F. O.
, and
Justino
,
P. A. P.
,
2013
, “
Nonlinear Dynamics of a Tightly Moored Point-Absorber Wave Energy Converter
,”
Ocean Eng.
,
59
, pp.
20
36
.
13.
Yang
,
L.
,
Hals
,
J.
, and
Moan
,
T.
,
2010
, “
Analysis of Dynamic Effects Relevant for the Wear Damage in Hydraulic Machines for Wave Energy Conversion
,”
Ocean Eng.
,
37
(
13
), pp.
1089
1102
.
14.
Orazov
,
B.
,
O'Reilly
,
O. M.
, and
Savaş
,
Ö.
,
2010
, “
On the Dynamics of a Novel Ocean Wave Energy Converter
,”
J. Sound Vib.
,
329
(
24
), pp.
5058
5069
.
15.
Cummins
,
W. E.
,
1962
, “
The Impulse Response Function and Ship Motions
,”
Schiffstechnik
,
9
, pp.
101
109
.
16.
Zurkinden
,
A. S.
,
Ferri
,
F.
,
Beatty
,
S.
,
Kofoed
,
J. P.
, and
Kramer
,
M. M.
,
2014
, “
Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter
,”
Ocean Eng.
,
78
, pp.
11
21
.
17.
Zhang
,
X.
, and
Yang
,
J.
,
2015
, “
Power Capture Performance of an Oscillating-Body WEC With Nonlinear Snap Through PTO Systems in Irregular Waves
,”
Appl. Ocean Res.
,
52
, pp.
261
273
.
18.
Agamloh
,
E. B.
,
Wallace
,
A. K.
, and
von Jouanne
,
A.
,
2008
, “
Application of Fluid–Structure Interaction Simulation of an Ocean Wave Energy Extraction Device
,”
Renewable Energy
,
33
(
4
), pp.
748
757
.
19.
Li
,
Y.
, and
Yu
,
Y.-H.
,
2012
, “
A Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers
,”
Renewable Sustainable Energy Rev.
,
16
(
6
), pp.
4352
4364
.
20.
Babarit
,
A.
,
Hals
,
J.
,
Muliawan
,
M. J.
,
Kurniawan
,
A.
,
Moan
,
T.
, and
Krokstad
,
J.
,
2012
, “
Numerical Benchmarking Study of a Selection of Wave Energy Converters
,”
Renewable Energy
,
41
, pp.
44
63
.
21.
Babarit
,
A.
,
Hals
,
J.
,
Muliawan
,
M. J.
,
Kurniawan
,
A.
,
Moan
,
T.
, and
Krokstad
,
J.
,
2015
, “
Corrigendum to “Numerical Benchmarking Study of a Selection of Wave Energy Converters” [Renew Energy 41 (2012) 44–63]
,”
Renewable Energy
,
74
, pp.
955
957
.
22.
Goggins
,
J.
, and
Finnegan
,
W.
,
2014
, “
Shape Optimisation of Floating Wave Energy Converters for a Specified Wave Energy Spectrum
,”
Renewable Energy
,
71
, pp.
208
220
.
23.
Falcão
,
A. F. d. O.
, and
Rodrigues
,
R. J. A.
,
2002
, “
Stochastic Modelling of OWC Wave Power Plant Performance
,”
Appl. Ocean Res.
,
24
(
2
), pp.
59
71
.
24.
Falcão
,
A. F. d. O.
,
2002
, “
Control of an Oscillating-Water-Column Wave Power Plant for Maximum Energy Production
,”
Appl. Ocean Res.
,
24
(
2
), pp.
73
82
.
25.
Falcão
,
A. F. d. O.
,
2004
, “
Stochastic Modelling in Wave Power-Equipment Optimization: Maximum Energy Production Versus Maximum Profit
,”
Ocean Eng.
,
31
(
11–12
), pp.
1407
1421
.
26.
Gomes
,
R. P. F.
,
Henriques
,
J. C. C.
,
Gato
,
L. M. C.
, and
Falcão
,
A. F. O.
,
2012
, “
Hydrodynamic Optimization of an Axisymmetric Floating Oscillating Water Column for Wave Energy Conversion
,”
Renewable Energy
,
44
, pp.
328
339
.
27.
Falcão
,
A. F. O.
,
Henriques
,
J. C. C.
,
Gato
,
L. M. C.
, and
Gomes
,
R. P. F.
,
2014
, “
Air Turbine Choice and Optimization for Floating Oscillating-Water-Column Wave Energy Converter
,”
Ocean Eng.
,
75
, pp.
148
156
.
28.
Taghipour
,
R.
,
Perez
,
T.
, and
Moan
,
T.
,
2008
, “
Hybrid Frequency–Time Domain Models for Dynamic Response Analysis of Marine Structures
,”
Ocean Eng.
,
35
(
7
), pp.
685
705
.
29.
Perez
,
T.
, and
Fossen
,
T. I.
,
2011
, “
Practical Aspects of Frequency-Domain Identification of Dynamic Models of Marine Structures From Hydrodynamic Data
,”
Ocean Eng.
,
38
(
2–3
), pp.
426
435
.
30.
Duclos
,
G.
,
Clément
,
A. H.
, and
Chatry
,
G.
,
2001
, “
Absorption of Outgoing Waves in a Numerical Wave Tank Using a Self-Adaptive Boundary Condition
,”
Int. J. Offshore Pol. Eng.
,
11
(
3
), pp.
168
175
.
31.
Vicente
,
P. C.
,
Falcão
,
A. F.
, and
Justino
,
P. A. P.
,
2010
, “
Nonlinear Dynamics of a Floating Wave Energy Converter Reacting Against the Sea Bottom Through a Tight Mooring Cable
,”
ASME
Paper No. OMAE2010-20144.
32.
Budal
,
K.
, and
Falnes
,
J.
,
1975
, “
A Resonant Point Absorber of Ocean-Wave Power
,”
Nature
,
256
, pp.
478
479
.
33.
Budal
,
K.
, and
Falnes
,
J.
,
1975
, “
Power Generation From Ocean Waves Using a Resonant Oscillating System
,”
Mar. Sci. Commun.
,
1
, pp.
269
288
.
34.
Falnes
,
J.
, and
Budal
,
K.
,
1978
, “
Wave-Power Conversion by Point Absorbers
,”
Norwegian Marit. Res.
,
6
, pp.
2
11
.
35.
Evans
,
D. V.
,
1981
, “
Maximum Wave-Power Absorption Under Motion Constraints
,”
Appl. Ocean Res.
,
3
(
4
), pp.
200
203
.
36.
Budal
,
K.
, and
Falnes
,
J.
,
1982
, “
Wave Power Conversion by Point Absorbers: A Norwegian Project
,”
Int. J. Ambient Energy
,
3
(
2
), pp.
59
67
.
37.
Pizer
,
D. J.
,
1993
, “
Maximum Wave-Power Absorption of Point Absorbers Under Motion Constraints
,”
Appl. Ocean Res.
,
15
(
4
), pp.
227
234
.
38.
Jordan
,
D. W.
, and
Smith
,
P.
,
2007
,
Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers
,
Oxford University Press
,
Oxford, UK
.
39.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
Weinheim, Germany
.
40.
Hagedorn
,
P.
, and
Stadler
,
W.
,
1988
,
Non-Linear Oscillations
,
Oxford University Press
,
Oxford, UK
.
41.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications
,
Mineola, NY
.
42.
Spanos
,
P. D.
,
Ghosh
,
R.
,
Finn
,
L. D.
,
Botros
,
F.
, and
Halkyard
,
J.
,
2005
, “
Efficient Dynamic Analysis of a Combined Spar System Via a Frequency Domain Approach
,”
ASME
Paper No. OMAE2005-67134.
43.
Spanos
,
P. D.
,
Sofi
,
A.
,
Wang
,
J.
, and
Peng
,
B.
,
2006
, “
A Method for Fatigue Analysis of Piping Systems on Topsides of FPSO Structures
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(
2
), pp.
162
168
.
44.
Spanos
,
P. D.
,
Ghosh
,
R.
,
Finn
,
L. D.
, and
Halkyard
,
J.
,
2005
, “
Coupled Analysis of a Spar Structure: Monte Carlo and Statistical Linearization Solutions
,”
ASME J. Offshore Mech. Arct. Eng.
,
127
(
1
), pp.
11
16
.
45.
Spanos
,
P. D.
,
Nava
,
V.
, and
Arena
,
F.
,
2010
, “
Coupled Surge-Heave-Pitch Dynamic Modeling of Spar-Moonpool-Riser Interaction
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
2
), p.
021301
.
46.
Low
,
Y. M.
,
2009
, “
Frequency Domain Analysis of a Tension Leg Platform With Statistical Linearization of the Tendon Restoring Forces
,”
Mar. Struct.
,
22
(
3
), pp.
480
503
.
47.
Hulme
,
A.
,
1982
, “
The Wave Forces Acting on a Floating Hemisphere Undergoing Forced Periodic Oscillations
,”
J. Fluid Mech.
,
121
, pp.
443
463
.
48.
Newman
,
J. N.
,
1962
, “
The Exciting Forces on Fixed Bodies in Waves
,”
J. Ship Res.
,
6
(
3
), pp.
10
17
.
49.
Spanos
,
P. D.
,
Richichi
,
A.
, and
Arena
,
F.
,
2014
, “
Stochastic Analysis of a Nonlinear Energy Harvester Model
,”
ASME
Paper No. OMAE2014-24489.
50.
Atalik
,
T. S.
, and
Utku
,
S.
,
1976
, “
Stochastic Linearization of Multi-Degree-of-Freedom Non-Linear Systems
,”
Earthquake Eng. Struct. Dyn.
,
4
(
4
), pp.
411
420
.
51.
Priestley
,
M. B.
,
1996
,
Spectral Analysis and Time Series
,
Elsevier Academic Press
,
Amsterdam, The Netherlands
.
52.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
191
204
.
53.
Spanos
,
P. D.
, and
Tsavachidis
,
S.
,
2001
, “
Deterministic and Stochastic Analyses of Nonlinear System With a Biot Visco-Elastic Element
,”
Earthquake Eng. Struct. Dyn.
,
30
(
4
), pp.
595
612
.
54.
Hasselmann
,
K.
,
Barnett
,
T. P.
,
Bouws
,
E.
,
Carlson
,
H.
,
Cartwright
,
D. E.
,
Eake
,
K.
,
Euring
,
J. A.
,
Gienapp
,
A.
,
Hasselmann
,
D. E.
,
Kruseman
,
P.
,
Meerburg
,
A.
,
Mullen
,
P.
,
Olbers
,
D. J.
,
Richren
,
K.
,
Sell
,
W.
, and
Walden
,
H.
,
1973
, “
Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP)
,”
Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift
,
A8
, pp.
1
95
.
You do not currently have access to this content.