Combined with the free-running model tests of KVLCC ship, the system identification (SI) based on support vector machines (SVM) is proposed for the prediction of ship maneuvering motion. The hydrodynamic derivatives in an Abkowitz model are determined by the Lagrangian factors and the support vectors in the SVM regression model. To obtain the optimized structural factors in SVM, particle swarm optimization (PSO) is incorporated into SVM. To diminish the drift of hydrodynamic derivatives after regression, a difference method is adopted to reconstruct the training samples before identification. The validity of the difference method is verified by correlation analysis. Based on the Abkowitz mathematical model, the simulation of ship maneuvering motion is conducted. Comparison between the predicted results and the test results demonstrates the validity of the proposed methods in this paper.

References

References
1.
International Maritime Organization (IMO)
,
2002
, “
Standards for Ship Maneuverability
,” Resolution MSC 137(76).
2.
The Maneuvering Committee
,
2008
, “
Final Report and Recommendations to the 25th ITTC
,” 25th International Towing Tank Conference, Fukuoka, Japan, pp.
143
208
.
3.
Koyama
,
K.
,
1971
, “
Analysis of Full-Scale Measurement of Maneuverability by Trial and Error Methods
,” Shipbuilding Laboratory, Delft University of Technology, Delft, The Netherlands, Report No. 332.
4.
Holzhüter
,
T.
,
1989
, “
Robust Identification in an Adaptive Track Controller for Ships
,”
3rd IFAC Symposium on Adaptive Systems in Control and Signal Processing
,
Glasgow, UK
, pp.
461
466
.
5.
Hayes
,
M. N.
,
1971
, “
Parameters Identification of Nonlinear Stochastic Systems Applied to Ocean Vehicle Dynamics
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
6.
Van Amerongen
,
J.
,
1984
, “
Adaptive Steering of Ships—A Model Reference Approach
,”
Automatica
,
20
(
1
), pp.
3
14
.
7.
Abkowitz
,
M. A.
,
1980
, “
Measurement of Hydrodynamic Characteristic From Ship Maneuvering Trials by System Identification
,”
Trans. Soc. Naval Arch. Mar. Eng.
,
88
, pp.
283
318
.
8.
Hwang
,
W.-Y.
,
1980
, “
Application of System Identification to Ship Maneuvering
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
9.
Åström
,
K. J.
, and
Källström
,
C. G.
,
1976
, “
Identification of Ship Steering Dynamics
,”
Automatica
,
12
(
1
), pp.
9
22
.
10.
Källström
,
C. G.
, and
Åström
,
K. J.
,
1981
, “
Experiences of System Identification Applied to Ship Steering
,”
Automatica
,
17
(
1
), pp.
187
198
.
11.
Zhou
,
W.-W.
, and
Blanke
,
M.
,
1989
, “
Identification of a Class of Nonlinear State-Space Models Using RPE Techniques
,”
IEEE Trans. Autom. Control
,
34
(
3
), pp.
312
316
.
12.
Munoz-Mansilla
,
R.
,
Aranda
,
J.
,
Diaz
,
J. M.
, and
de la Cruz
,
J.
,
2009
, “
Parameter Model Identification of High-Speed Craft Dynamics
,”
Ocean Eng.
,
36
, pp.
1025
1038
.
13.
Nguyen
,
H. D.
,
2007
, “
Recursive Identification of Ship Maneuvering Dynamics and Hydrodynamics
,”
36th EMAC Annual Conference
,
Reykjavik, Iceland
, pp.
C717
C732
.
14.
Ødegård
,
V.
,
2009
, “
Nonlinear Identification of Ship Autopilot Models
,” Master thesis, Norwegian University of Science and Technology, Trondheim, Norway.
15.
Velasco
,
F. J.
,
Zamanillo
,
I.
,
Lopez
,
E.
, and
Moyano
,
E.
,
2011
, “
Parameter Estimation of Ship Linear Maneuvering Models
,”
OCEANS 2011 IEEE Santander Conference
,
Santander (Cantabria), Spain
, pp.
1
8
.
16.
Herrero
,
E. R.
, and
Velasco Gonzalez
,
F.
,
2012
, “
Two-Step Identification of Non-Linear Maneuvering Models of Marine Vessels
,”
Ocean Eng.
,
53
, pp.
72
82
.
17.
Perera
,
L. P.
,
Oliveira
,
P.
, and
Guedes Soares
,
C.
,
2015
, “
System Identification of Nonlinear Vessel Steering
,”
ASME J. Offshore Mech. Arct. Eng
,
137
(
3
), p.
031302
.
18.
Yoon
,
H. K.
, and
Rhee
,
K. P.
,
2003
, “
Identification of Hydrodynamic Derivatives in Ship Maneuvering Equations of Motion by Estimation-Before-Modeling Technique
,”
Ocean Eng.
,
30
(
18
), pp.
2379
2404
.
19.
Araki
,
M.
,
Sadat-Hosseini
,
H.
,
Sanada
,
Y.
,
Tanimoto
,
K.
,
Umeda
,
N.
, and
Stern
,
F.
,
2012
, “
Estimating Maneuvering Coefficients Using System Identification Methods With Experimental, System-Based, and CFD Free-Running Trial Data
,”
Ocean Eng.
,
51
, pp.
63
84
.
20.
Selvam
,
R. P.
,
Bhattacharyya
,
S. K.
, and
Haddara
,
M. R.
,
2005
, “
A Frequency Domain System Identification Method for Linear Ship Maneuvering
,”
Int. Shipbuild. Prog.
,
52
(
1
), pp.
5
27
.
21.
Bhattacharyya
,
S. K.
, and
Haddara
,
M. R.
,
2006
, “
Parameter Identification for Nonlinear Ship Maneuvering
,”
J. Ship Res.
,
50
(
3
), pp.
197
207
.
22.
Chen
,
Y.
,
Song
,
Y.
, and
Chen
,
M.
,
2010
, “
Parameters Identification for Ship Motion Model Based on Particle Swarm Optimization
,”
Kybernetes
,
39
(
6
), pp.
871
880
.
23.
Haddara
,
M. R.
, and
Wang
,
Y.
,
1999
, “
Parametric Identification of Maneuvering Models for Ships
,”
Int. Shipbuild. Prog.
,
46
(
445
), pp.
5
27
.
24.
Ebada
,
A.
, and
Abdel-Maksoud
,
M.
,
2005
, “
Applying Artificial Intelligence (A.I.) to Predict the Limits of Ship Turning Maneuvers
,”
Jahrb. Schiffbautechnischen Ges.
,
99
, pp.
132
139
.
25.
Moreira
,
L.
, and
Guedes Soares
,
C.
,
2003
, “
Dynamic Model of Maneuverability Using Recursive Neural Networks
,”
Ocean Eng.
,
30
(
13
), pp.
1669
1697
.
26.
Hess
,
D.
, and
Faller
,
W.
,
2000
, “
Simulation of Ship Maneuvers Using Recursive Neural Networks
,”
23rd Symposium on Naval Hydrodynamics
,
Val de Reuil, France
, pp.
223
242
.
27.
Hess
,
D.
, and
Faller
,
W.
,
2002
, “
Using Recursive Neural Networks for Blind Predictions of Submarine Maneuvers
,”
24th Symposium on Naval Hydrodynamics
,
Fukuoka, Japan
, pp.
719
733
.
28.
Hess
,
D.
,
Faller
,
W.
,
Lee
,
J.
,
Fu
,
T.
, and
Ammeen
,
E.
,
2006
, “
Ship Maneuvering Simulation in Wind and Waves: A Nonlinear Time-Domain Approach Using Recursive Neural Networks
,”
26th Symposium on Naval Hydrodynamics
,
Rome, Italy
.
29.
Hess
,
D.
,
Faller
,
W.
, and
Lee
,
J.
,
2008
, “
Real-Time Nonlinear Simulation of Maneuvers for U.S. Navy Combatant DTMB 5415
,”
Workshop on Verification and Validation of Ship Maneuvering Simulation Methods (SIMMAN 2008)
,
Copenhagen, Denmark
, pp.
E15
E21
.
30.
Rajesh
,
G.
, and
Bhattacharyya
,
S. K.
,
2008
, “
System Identification for Nonlinear Maneuvering of Large Tankers Using Artificial Neural Network
,”
Appl. Ocean Res.
,
30
(
4
), pp.
256
263
.
31.
Luo
,
W. L.
, and
Zou
,
Z. J.
,
2009
, “
Parametric Identification of Ship Maneuvering Models by Using Support Vector Machines
,”
J. Ship Res.
,
53
(
1
), pp.
19
30
.
32.
Luo
,
W. L.
, and
Zou
,
Z. J.
,
2010
, “
Blind Prediction of Ship Maneuvering by Using Support Vector Machines
,”
ASME
Paper No. OMAE2010-20723.
33.
Luo
,
W. L.
,
Zou
,
Z. J.
, and
Xiang
,
H. L.
,
2011
, “
Simulation of Ship Maneuvering in the Proximity of a Pier by Using Support Vector Machines
,”
ASME
Paper No. OMAE2010-20723.
34.
Zhang
,
X. G.
, and
Zou
,
Z. J.
,
2011
, “
Identification of Abkowitz Model for Ship Maneuvering Motion Using ε–Support Vector Machines
,”
J. Hydrol.
,
23
(
3
), pp.
353
360
.
35.
Xu
,
F.
,
Zou
,
Z. J.
,
Yin
,
J. C.
, and
Cao
,
J.
,
2013
, “
Identification Modeling of Underwater Vehicles' Nonlinear Dynamics Based on Support Vector Machines
,”
Ocean Eng.
,
67
, pp.
68
76
.
36.
Zhang
,
X. G.
, and
Zou
,
Z. J.
,
2013
, “
Estimation of the Hydrodynamic Coefficients From Captive Model Test Results by Using Support Vector Machines
,”
Ocean Eng.
,
73
, pp.
25
31
.
37.
Wang
,
X. G.
,
Zou
,
Z. J.
, and
Xu
,
F.
,
2013
, “
Modeling of Ship Maneuvering Motion in 4 degrees of Freedom Based on Support Vector Machines
,”
ASME
Paper No. OMAE2013-10806.
38.
Moreno-Salinas
,
D.
,
Chaos
,
D.
,
Manuel de la Cruz
,
J.
, and
Aranda
,
J.
,
2013
, “
Identification of a Surface Marine Vessel Using LS-SVM
,”
J. Appl. Math.
,
2013
, pp.
1
11
.
39.
Abkowitz
,
M. A.
,
1964
, “
Lectures on Ship Hydrodynamics—Steering and Maneuverability
,” Hydro- and Aerodynamics Laboratory, Lyngby, Denmark, Report No. Hy-5.
40.
Fossen
,
T. I.
,
1994
,
Guidance and Control of Ocean Vehicles
,
Appx. E., Wiley
,
New York
.
41.
Vapnik
,
V. N.
,
1998
,
Statistical Learning Theory
,
Wiley
,
New York
, Chap. 1.
42.
Suykens
,
J. A. K.
,
De Brabanter
,
J.
,
Lukas
,
L.
, and
Vandewalle
,
J.
,
2002
, “
Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation
,”
Neurocomputing
,
48
, pp.
85
105
.
43.
Hwang
,
W.-Y.
,
1982
, “
Cancellation Effect and Parameter Identifiability of Ship Steering Dynamics
,”
Int. Shipbuild. Prog.
,
26
, pp.
90
120
.
44.
Gustafsson
,
F.
,
1996
, “
Determining the Initial States in Forward-Backward Filtering
,”
IEEE Trans. Signal Process.
,
44
(
4
), pp.
988
992
.
45.
Yeon
,
S. M.
,
Yeo
,
D. J.
, and
Rhee
,
K. P.
,
2006
, “
Optimal Input Design for the Identification of Low-Speed Maneuvering Mathematical Model
,”
International Conference on Marine Simulation and Ship Maneuverability (MARSIM2006)
,
Terschelling
,
The Netherlands
.
46.
Vapnik
,
V. N.
,
Levin
,
E.
, and
Lecun
,
Y.
,
1994
, “
Measuring the VC-Dimension of a Learning Machine
,”
Neural Comput.
,
6
(
5
), pp.
851
876
.
47.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
,
Washington, DC
, Vol.
4
, pp.
1942
1948
.
48.
Stern
,
F.
,
Agdrup
,
K.
,
Kim
,
S. Y.
,
Hochbaum
,
A. C.
,
Rhee
,
K. P.
,
Quadvlieg
,
F.
,
Perdon
,
P.
,
Hino
,
T.
,
Broglia
,
R.
, and
Gorski
,
J.
,
2011
, “
Experience From SIMMAN 2008—The First Workshop on Verification and Validation of Ship Maneuvering Simulation Methods
,”
J. Ship Res.
,
55
(
2
), pp.
135
147
.
You do not currently have access to this content.