A dynamic model for undamped, water hammer-induced, radial vibration of long, thin-walled, laminated, filament wound pipes is derived. The model is based on the interaction of the unsteady flow parameters with the anisotropic elastic properties of the pipe. With the aid of integral transforms and generalized functions, an approximate solution of the derived governing equation is achieved and its implementation on a representative example is discussed.

References

References
1.
Oliveira
,
G. M.
,
Franco
,
A. T.
, and
Negrao
,
C. O. R.
,
2015
, “
Mathematical Model for Viscoplastic Fluid Hammer
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011301
.
2.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
A. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
3.
Yao
,
E.
,
Kember
,
G.
, and
Hansen
,
D.
,
2015
, “
Analysis of Water Hammer Attenuation in Applications With Varying Valve Closure Times
,”
J. Eng. Mech.
,
141
(
1
), pp.
401
417
.
4.
Gaul
,
L.
, and
Wenzel
,
W.
,
2002
, “
A Coupled Symmetric BE–FE Method for Acoustic Fluid–Structure Interaction
,”
Eng. Anal. Boundary Elem.
,
26
(
7
), pp.
629
636
.
5.
Pavlou
,
D. G.
,
2013
, “
Introduction
,”
Composite Materials in Piping Applications
,
Destech Publications
,
Lancaster, CA
.
6.
Shi
,
J.-X.
,
Natsuki
,
T.
,
Lei
,
X.-W.
, and
Ni
,
Q.-Q.
,
2014
, “
Wave Propagation in the Filament-Wound Composite Pipes Conveying Fluid: Theoretical Analysis for Structural Health Monitoring Applications
,”
Compos. Sci. Technol.
,
98
, pp.
9
14
.
7.
Ansari
,
R.
,
Alisafaei
,
F.
, and
Ghaedi
,
P.
,
2010
, “
Dynamic Analysis of Multi-Layered Filament–Wound Composite Pipes Subjected to Cyclic Internal Pressure and Cyclic Temperature
,”
Compos. Struct.
,
92
(
5
), pp.
1100
1109
.
8.
Cesana
,
P.
, and
Bitter
,
N.
,
2014
, “
Modeling and Analysis of Water-Hammer in Coaxial Pipes
,”
J. Fluids Struct.
,
51
, pp.
225
239
.
9.
Perotti
,
L. E.
,
Deiterding
,
R.
,
Inaba
,
K.
,
Shephers
,
J.
, and
Ortiz
,
M.
,
2013
, “
Elastic Response of Water-Filled Fiber Composite Tubes Under Shock Wave Loading
,”
Int. J. Solids Struct.
,
50
(
3–4
), pp.
473
486
.
10.
Tijsseling
,
A. S.
,
2007
, “
Water Hammer With Fluid–Structure Interaction in Thick-Walled Pipes
,”
Comput. Struct.
,
85
(
11–14
), pp.
844
851
.
11.
HoYou
,
J.
, and
Inaba
,
K.
,
2013
, “
Fluid–Structure Interaction in Water-Filled Pipes of Anisotropic Composite Materials
,”
J. Fluids Struct.
,
36
, pp.
162
173
.
12.
Zanganeh
,
R.
,
Ahmadi
,
A.
, and
Keramat
,
A.
,
2015
, “
Fluid–Structure Interaction With Viscoelastic Supports During Waterhammer in a Pipeline
,”
J. Fluids Struct.
,
54
, pp.
215
234
.
13.
Kollár
,
L. P.
, and
Springer
,
G. S.
,
2009
,
Mechanics of Composite Structures
,
Cambridge University Press
,
Cambridge, UK
, Chap. 8.
14.
Hyer
,
M. W.
,
2009
,
Stress Analysis of Fiber-Reinforced Composite Materials
,
DEStech Publications
,
Lancaster, CA
, Chap. 7.
15.
Prudnikov
,
A. P.
,
Brychkov
,
Yu. A.
, and
Marichev
,
O. I.
,
2002
,
Integrals and Series, Vol. 5: Inverse Laplace Transforms
,
Taylor & Francis
,
London
, Chap. 2.
16.
“Composites/Plastics” http://composite.about.com
17.
18.
“Engineering ToolBox” http://www.engineeringtoolbox.com/
You do not currently have access to this content.