Structural crashworthiness with regard to crushing and fracture is a key element in the strength performance assessment of ship collisions in the Arctic. The aim of this study is to investigate the crashworthiness characteristics of steel-plated structures subject to low temperatures that are equivalent to the Arctic environment. The effect of low temperatures on the material properties is examined on the basis of tensile tests. Crushing tests are undertaken on steel-square tubes subject to a quasi-static crushing load at both room and low temperatures. The crushing behavior of the square tubes in this test is compared with ls-dyna computations. It is found that low temperatures have a significant effect on not only the material properties but also the crashworthiness of steel-plated structures in terms of mean crushing loads and brittle fracture. It is suggested that the collision-accidental limit state design of ships intended to operate in the Arctic region should be carried out by taking the effect of low temperatures into account.

References

References
1.
Magee
,
C. L.
, and
Thornton
,
P. H.
,
1978
, “
Design Considerations in Energy Absorption by Structural Collapse
,”
SAE
Paper No. 780434.
2.
Mahmood
,
H. F.
, and
Pauluszny
,
A. P.
,
1981
, “
Design of Thin Walled Column for Crash Energy Management—Their Strength and Mode of Collapse
,”
SAE
Paper No. 811302.
3.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4
), pp.
727
734
.
4.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.
5.
Abramowicz
,
W.
, and
Jones
,
N.
,
1986
, “
Dynamic Progressive Buckling of Circular and Square Tubes
,”
Int. J. Impact Eng.
,
4
(
4
), pp.
243
270
.
6.
Haris
,
S.
, and
Amdahl
,
J.
,
2012
, “
Crushing Resistance of a Cruciform and Its Application to Ship Collision and Grounding
,”
Ships Offshore Struct.
,
7
(
2
), pp.
185
195
.
7.
Haris
,
S.
, and
Amdahl
,
J.
,
2012
, “
An Analytical Model to Assess a Ship Side During a Collision
,”
Ships Offshore Struct.
,
7
(
4
), pp.
431
448
.
8.
Jones
,
N.
,
1989
,
Structural Impact
,
Cambridge University Press
,
Cambridge, UK
.
9.
Jones
,
N.
, and
Birch
,
R. S.
,
1990
, “
Dynamic and Static Axial Crushing of Axially Stiffened Square Tubes
,”
Proc. Inst. Mech. Eng., London, Part C
,
204
(
5
), pp.
293
310
.
10.
Paik
,
J. K.
, and
Pedersen
,
P. T.
,
1995
, “
Ultimate and Crushing Strength of Plated Structures
,”
J. Ship Res.
,
39
(
3
), pp.
250
261
.
11.
Paik
,
J. K.
,
Chung
,
J. Y.
, and
Chun
,
M. S.
,
1996
, “
On Quasi-Static Crushing of a Stiffened Square Tube
,”
J. Ship Res.
,
40
(
3
), pp.
51
60
.
12.
Paik
,
J. K.
, and
Wierzbicki
,
T.
,
1997
, “
A Benchmark Study on Crushing and Cutting of Plated Structures
,”
J. Ship Res.
,
41
(
2
), pp.
147
160
.
13.
Pill
,
I.
, and
Tabri
,
K.
,
2011
, “
Finite Element Simulations of Ship Collisions: A Coupled Approach to External Dynamics and Inner Mechanics
,”
Ships Offshore Struct.
,
6
(
1–2
), pp.
59
66
.
14.
Tabri
,
K
.,
2012
, “
Influence of Coupling in the Prediction of Ship Collision Damage
,”
Ships Offshore Struct.
,
7
(
1
), pp.
47
54
.
15.
Zheng
,
Y.
,
Aksu
,
S.
,
Vassalos
,
D.
, and
Tuzcu
,
C.
,
2007
, “
Study on Side Structure Resistance to Ship-Ship Collisions
,”
Ships Offshore Struct.
,
2
(
3
), pp.
273
293
.
16.
Appolonov
,
E. M.
,
Nesterov
,
A. B.
, and
Sazonov
,
K. E.
,
2011
, “
Regulation of Extreme Ice Loads Acting on Hulls of Azimuth Propulsion Systems for Ice Ships
,”
Ships Offshore Struct.
,
6
(
3
), pp.
239
247
.
17.
Appolonov
,
E. M.
,
Didkovsky
,
A. V.
,
Kuteinikov
,
M. A.
, and
Nesterov
,
A. B.
,
2011
, “
Improvement in Design Models for Ice Load Evaluation Under Vessel Impact Against Ice
,”
Ships Offshore Struct.
,
6
(
3
), pp.
249
256
.
18.
Paik
,
J. K.
,
Sohn
,
J. M.
,
Shin
,
Y. S.
, and
Suh
,
Y. S.
,
2011
, “
Nonlinear Structural Analysis of Membrane-Type LNG Carrier Cargo Containment System Under Cargo Static Pressure Loads at the Cryogenic Condition With a Temperature of −163 °C
,”
Ships Offshore Struct.
,
6
(
4
), pp.
311
322
.
19.
Paik
,
J. K.
,
Kim
,
B. J.
,
Park
,
D. K.
, and
Jang
,
B. S.
,
2011
, “
On Quasi-Static Crushing of Thin-Walled Steel Structures in Cold Temperature: Experimental and Numerical Studies
,”
Int. J. Impact Eng.
,
38
(
1
), pp.
13
28
.
20.
Park
,
D. K.
,
Kim
,
D. K.
,
Kim
,
B. J.
,
Seo
,
J. K.
,
Ha
,
Y. C.
, and
Paik
,
J. K.
,
2015
, “
Operability of Non-Ice Class Aged Ships in the Arctic Ocean—Part I: Ultimate Limit State Approach
,”
Ocean Eng.
,
102
, pp.
197
205
.
21.
Park
,
D. K.
,
Kim
,
D. K.
,
Kim
,
B. J.
,
Seo
,
J. K.
,
Ha
,
Y. C.
, and
Paik
,
J. K.
,
2015
, “
Operability of Non-Ice Class Aged Ships in the Arctic Ocean-Part II: Accidental Limit State Approach
,”
Ocean Eng.
,
102
, pp.
206
215
.
22.
Park
,
D. K.
,
Paik
,
J. K.
,
Kim
,
B. J.
,
Seo
,
J. K.
,
Li
,
C. G.
, and
Kim
,
D. K.
,
2014
, “
Ultimate Strength Performance of Northern Sea Going Non-Ice Class Commercial Ships
,”
Struct. Eng. Mech.
,
52
(
3
), pp.
613
632
.
23.
Sazonov
,
K. E.
,
2011
, “
Navigation Challenges for Large-Size Ships in Ice Conditions
,”
Ships Offshore Struct.
,
6
(
3
), pp.
231
238
.
24.
Bridges
,
R.
,
Zhang
,
S.
, and
Shaposhnikov
,
V.
,
2012
, “
Experimental Investigation on the Effect of Low Temperatures on the Fatigue Strength of Welded Steel Joints
,”
Ships Offshore Struct.
,
7
(
3
), pp.
311
319
.
25.
Park
,
D. K.
,
Kim
,
D. K.
,
Kim
,
B. J.
,
Seo
,
J. K.
, and
Paik
,
J. K.
,
2012
, “
Effects of Low Temperature on ASTM A131: An Experimental and Numerical Study
,”
ASME
Paper No. OMAE2012-83188.
26.
Manjunath
,
G. L.
, and
Surendran
,
S.
,
2013
, “
Dynamic Fracture Toughness of Aluminium 6063 With Multilayer Composite Patching at Lower Temperatures
,”
Ships Offshore Struct.
,
8
(
2
), pp.
163
175
.
27.
Miao
,
Z. M.
,
Zhang
,
H. S. H.
,
Wu
,
F.
, and
Ma
,
T.
,
2010
, “
Research on Low Temperature CTOD Toughness for Welded Joints of the Module Stool of an FPSO
,”
Ships Offshore Struct.
,
5
(
1
), pp.
75
80
.
28.
Pashin
,
V. M.
,
Appolonov
,
E. M.
,
Belyashov
,
V. A.
, and
Simonov
,
Y. A.
,
2011
, “
Scientific Promotion of 60 MW General-Purpose Nuclear Icebreaker Designing
,”
Ships Offshore Struct.
,
6
(
3
), pp.
185
193
.
29.
ASTM, ASTM E8/E8M,
2015
,
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM Standard
,
West Conshohocken PA
.
30.
ISO, ISO 6892-3
,
2015
,
Metallic Material—Tensile Testing—Part 3: Method of Test at Low Temperature
,
ISO International Standard
,
Geneva. Switzerland
.
31.
Kansai Society of Naval Architects
,
1983
,
Handbook of Ship Design
,
Kaibundo
,
Tokyo, Japan
.
32.
IACS
,
2007
,
Requirements Concerning Polar Class
,
International Association of Classification Societies
,
London
.
33.
LS-DYNA
,
2015
,
User's Manual
,
Livermore Software Technology
,
Livermore, CA
.
34.
Hughes
,
O. F.
, and
Paik
,
J. K.
,
2010
,
Ship Structural Analysis and Design
,
Society of Naval Architects and Marine Engineers
,
Jersey City, NJ
.
35.
Paik
,
J. K.
,
2007
, “
Practical Techniques for Finite Element Modelling to Simulate Structural Crashworthiness in Ship Collisions and Grounding (Part I: Theory)
,”
Ships Offshore Struct.
,
2
(
1
), pp.
69
80
.
36.
Paik
,
J. K.
,
2007
, “
Practical Techniques for Finite Element Modelling to Simulate Structural Crashworthiness in Ship Collisions and Grounding (Part II: Verification)
,”
Ships Offshore Struct.
,
2
(
1
), pp.
81
85
.
37.
Paik
,
J. K.
, and
Thayamballi
,
A. K.
,
2003
,
Ultimate Limit State Design of Steel-Plated Structures
,
Wiley
,
Chichester, UK
.
38.
Paik
,
J. K.
, and
Thayamballi
,
A. K.
,
2007
,
Ship-Shaped Offshore Installations: Design, Building, and Operation
,
Cambridge University Press
,
Cambridge, UK
.
39.
ISSC
,
2003
, “
Ship Collisions and Grounding, Report of Specialist Committee
,”
International Ship and Offshore Structures Congress
,
San Diego, CA
, Aug. 11–15.
You do not currently have access to this content.