Numerical simulations of the nonlinear Schrödinger (NLS) equation are performed by imposing randomly synthesized free surface displacement at the wave maker characterized by the Joint North Sea Wave Project (JONSWAP) spectrum and compared with four different sea states generated in the deepwater wave basin of Marintek. The comparisons show that the numerical simulations have a high degree of agreement with the laboratory experiments although a little overestimation can be observed, especially in the severe sea state. Thus, the simulations still catch the main characteristics of extreme waves and provide an important physical insight into their generation. The coefficient of kurtosis λ40 presents a similar spatial evolution trend with the abnormal wave density, and the nonlinear Gram–Charlier (GC) model is used to predict the wave height distribution. It is demonstrated again that the theoretical approximation based on the GC expansion can describe large wave heights reasonably well in most cases. However, if the sea state is severe, wave breaking can significantly decrease the actual tail of wave height distribution, and discrepancy occurs when comparing with the numerical simulation. Moreover, the number of waves also plays an important role on the prediction of extreme wave height.

References

References
1.
Clauss
,
G.
,
2002
, “
Dramas of the Sea: Episodic Waves and Their Impact on Offshore Structures
,”
Appl. Ocean Res.
,
24
(
3
), pp.
147
161
.
2.
Kharif
,
C.
,
Pelinovsky
,
E.
, and
Slunyaev
,
A.
,
2009
,
Rogue Waves in the Ocean
,
Springer-Verlag
,
Berlin
, pp.
11
31
.
3.
Guedes Soares
,
C.
,
Cherneva
,
Z.
,
Petrova
,
P.
, and
Antão
,
E.
,
2011
, “
Large Waves in Sea States
,”
Marine Technology and Engineering
,
C.
Guedes Soares
,
Y.
Garbatov
,
N.
Fonseca
, and
A. P.
Teixeira
, eds.,
Taylor & Francis Group
,
London
, pp.
79
95
.
4.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
, and
Bertone
,
S.
,
2001
, “
Freak Waves in Random Oceanic Sea States
,”
Phys. Rev. Lett.
,
86
(
25
), pp.
5831
5834
.
5.
Lighthill
,
M. J.
,
1965
, “
Contribution to the Theory of Waves in Nonlinear Dispersive Systems
,”
J. Inst. Math. Appl.
,
1
(
3
), pp.
269
306
.
6.
Benjamin
,
T. B.
, and
Feir
,
J. E.
,
1967
, “
The Disintegration of Wave Trains on Deep Water. Part 1. Theory
,”
J. Fluid Mech.
,
27
(
3
), pp.
417
430
.
7.
Zakharov
,
V. E.
,
1968
, “
Stability of Periodic Waves of Finite Amplitude on a Surface of Deep Fluid
,”
ASME J. Appl. Mech. Tech. Phys.
,
9
(
2
), pp.
190
194
.
8.
Hasimoto
,
H.
, and
Ono
,
H.
,
1972
, “
Nonlinear Modulation of Gravity Waves
,”
J. Phys. Soc. Jpn.
,
33
(
3
), pp.
805
811
.
9.
Mei
,
C. C.
,
1989
,
The Applied Dynamics of Ocean Surface Waves
,
World Scientific Publishing
,
Singapore
, pp.
605
618
.
10.
Zakharov
,
V. E.
, and
Shabat
,
A. B.
,
1972
, “
Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in Nonlinear Media
,”
Sov. Phys., JETP
,
34
, pp.
62
69
.
11.
Dysthe
,
K. B.
,
1979
, “
Note on a Modification to the Nonlinear Schrödinger Equation for Application to Deep Water Waves
,”
Proc. R. Soc. London, Ser. A
,
369
(
1736
), pp.
105
114
.
12.
Trulsen
,
K.
, and
Dysthe
,
K. B.
,
1996
, “
A Modified Nonlinear Schrödinger Equation for Broader Bandwidth Gravity Waves on Deep Water
,”
Wave Motion
,
24
(
3
), pp.
281
289
.
13.
Trulsen
,
K.
,
Kliakhandler
,
I.
,
Dysthe
,
K. B.
, and
Velarde
,
M. G.
,
2000
, “
On Weakly Nonlinear Modulation of Waves on Deep Water
,”
Phys. Fluids
,
12
(
10
), pp.
2432
2437
.
14.
Lo
,
E.
, and
Mei
,
C. C.
,
1985
, “
A Numerical Study of Water-Wave Modulation Based on a Higher-Order Nonlinear Schrödinger Equation
,”
J. Fluid Mech.
,
150
, pp.
395
416
.
15.
Ablowitz
,
M. I.
,
Hammack
,
D.
,
Henderson
,
J.
, and
Scholder
,
C. M.
,
2000
, “
Modulated Periodic Stokes Waves in Deep Water
,”
Phys. Rev. Lett.
,
84
, pp.
887
890
.
16.
Slunyaev
,
A.
,
Pelinovsky
,
E.
, and
Guedes Soares
,
C.
,
2005
, “
Modeling Freak Waves From the North Sea
,”
Appl. Ocean Res.
,
27
(
1
), pp.
12
22
.
17.
Shemer
,
L.
,
Sergeeva
,
A.
, and
Slunyaev
,
A.
,
2010
, “
Applicability of Envelope Model Equations for Simulation of Narrow-Spectrum Unidirectional Random Wave Field Evolution: Experimental Validation
,”
Phys. Fluids
,
22
(
1
), p.
016601
.
18.
Peregrine
,
D. H.
,
Skyner
,
D.
,
Stiassnie
,
M.
, and
Dold
,
N.
,
1988
, “
Nonlinear Effects on Focused Water Waves
,”
21st International Conference on Coastal Engineering
,
Torremolinos, Spain
, Vol.
1
, pp.
732
742
.
19.
Osborne
,
A.
,
2000
, “
Nonlinear Instability Analysis of Deep Water Wave Trains: Computation of Maximum Heights of Rogue Waves
,”
ASME
Paper No. OSU OFT-4033.
20.
Ablowitz
,
M. I.
,
Hammack
,
D.
,
Henderson
,
J.
, and
Scholder
,
C. M.
,
2001
, “
Long-Time Dynamics of the Modulational Instability of Deep Water
,”
Physica D
,
152–153
, pp.
416
433
.
21.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
,
Cavaleri
,
L.
,
Brandini
,
C.
, and
Stansberg
,
C.
,
2004
, “
Observation of Strongly Non-Gaussian Statistics for Random Sea Surface Gravity Waves in Wave Flume Experiments
,”
Phys. Rev. E
,
70
(
6
), p.
067302
.
22.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
, and
Cavaleri
,
L.
,
2005
, “
Modulational Instability and Non-Gaussian Statistics in Experimental Random Water-Wave Trains
,”
Phys. Fluids
,
17
(
7
), p.
078101
.
23.
Onorato
,
M.
,
Osborne
,
A.
, and
Serio
,
M.
,
2006
, “
Modulational Instability in Crossing Sea States: A Possible Mechanism for the Formation of Freak Waves
,”
Phys. Rev. Lett.
,
96
, p.
014503
.
24.
Zakharov
,
V. E.
,
Dyachenko
,
A.
, and
Prokofiev
,
A.
,
2006
, “
Freak Waves as Nonlinear Stage of Stokes Wave Modulation Instability
,”
Eur. J. Mech. B
,
25
(
5
), pp.
677
692
.
25.
Slunyaev
,
A.
,
Pelinovsky
,
E.
, and
Guedes Soares
,
C.
,
2011
, “
Reconstruction of Extreme Events Through Numerical Simulations
,”
ASME
Paper No. OMAE2011-50314.
26.
Shemer
,
L.
,
Sergeeva
,
A.
, and
Liberzon
,
D.
,
2010
, “
Effect of the Initial Spectrum on the Spatial Evolution of Statistics of Unidirectional Nonlinear Random Waves
,”
J. Geophys. Res.
,
115
, p.
C12039
.
27.
Longuet-Higgins
,
M.
,
1952
, “
On the Statistical Distribution of the Heights of Sea Waves
,”
J. Mar. Res.
,
11
(
3
), pp.
245
266
.
28.
Guedes Soares
,
C.
,
2003
, “
Probabilistic Models of Waves in the Coastal Zone
,”
Advances in Coastal Modeling
,
C.
Lakhan
, ed.,
Elsevier Science
,
Windsor, Canada
, pp.
159
187
.
29.
Naess
,
A.
,
1985
, “
On the Distribution of Crest-to-Trough Wave Heights
,”
Ocean Eng.
,
12
(
3
), pp.
221
234
.
30.
Boccotti
,
P.
,
1989
, “
On Mechanics of Irregular Gravity Waves
,”
Atti Accad. Naz. Lincei, Mem.
,
19
, pp.
110
170
.
31.
Boccotti
,
P.
,
2000
,
Wave Mechanics for Ocean Engineering
,
Elsevier Science
,
Amsterdam
, pp.
75
90
.
32.
Tayfun
,
M. A.
,
1980
, “
Narrow-Band Nonlinear Sea Waves
,”
J. Geophys. Res.
,
85
(
C3
), pp.
1548
1552
.
33.
Tayfun
,
M. A.
, and
Fedele
,
F.
,
2007
, “
Wave-Height Distributions and Nonlinear Effects
,”
Ocean Eng.
,
34
(
11–12
), pp.
1631
1649
.
34.
Petrova
,
P.
, and
Guedes Soares
,
C.
,
2008
, “
Maximum Wave Crest and Height Statistics of Irregular and Abnormal Waves in an Offshore Basin
,”
Appl. Ocean Res.
,
30
(
2
), pp.
144
152
.
35.
Guedes Soares
,
C.
,
Cherneva
,
Z.
, and
Antão
,
E.
,
2003
, “
Characteristics of Abnormal Waves in North Sea Storm Sea States
,”
Appl. Ocean Res.
,
25
(
6
), pp.
337
344
.
36.
Guedes Soares
,
C.
,
Cherneva
,
Z.
, and
Antão
,
E.
,
2004
, “
Abnormal Waves During the Hurricane Camille
,”
J. Geophys. Res.
,
109
, p.
C08008
.
37.
Petrova
,
P.
,
Cherneva
,
Z.
, and
Guedes Soares
,
C.
,
2006
, “
Distribution of Crest Heights in Sea States With Abnormal Waves
,”
Appl. Ocean Res.
,
28
(
4
), pp.
235
245
.
38.
Petrova
,
P.
,
Cherneva
,
Z.
, and
Guedes Soares
,
C.
,
2007
, “
On the Adequacy of Second-Order Models to Predict Abnormal Waves
,”
Ocean Eng.
,
34
(
7
), pp.
956
961
.
39.
Mori
,
N.
,
2003
, “
Effects of Wave Breaking on Wave Statistics for Deep-Water Random Wave Train
,”
Ocean Eng.
,
30
(
2
), pp.
205
220
.
40.
Onorato
,
M.
,
Osborne
,
A.
,
Serio
,
M.
,
Cavaleri
,
L.
,
Brandini
,
C.
, and
Stansberg
,
C.
,
2006
, “
Extreme Waves, Modulational Instability and Second Order Theory: Wave Flume Experiments on Irregular Waves
,”
Eur. J. Mech. B
,
25
(
5
), pp.
586
601
.
41.
Cherneva
,
Z.
,
Tayfun
,
M. A.
, and
Guedes Soares
,
C.
,
2009
, “
Statistics of Nonlinear Waves Generated in an Offshore Wave Basin
,”
J. Geophys. Res.
,
114
, p.
C08005
.
42.
Cherneva
,
Z.
, and
Guedes Soares
,
C.
,
2011
, “
Evolution of Wave Properties During Propagation in a Ship Towing Tank and an Offshore Basin
,”
Ocean Eng.
,
38
(
17–18
), pp.
2254
2261
.
43.
Shemer
,
L.
, and
Sergeeva
,
A.
,
2009
, “
An Experimental Study of Spatial Evolution of Statistical Parameters in a Unidirectional Narrow-Banded Random Wave Field
,”
J. Geophys. Res.
,
114
, p.
C01015
.
44.
Mori
,
N.
, and
Janssen
,
P.
,
2006
, “
On Kurtosis and Occurrence Probability of Freak Waves
,”
J. Phys. Oceanogr.
,
36
(
7
), pp.
1471
1483
.
45.
Cherneva
,
Z.
,
Guedes Soares
,
C.
, and
Petrova
,
P.
,
2011
, “
Distribution of Wave Height Maxima in Storm Sea States
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
4
), p.
041601
.
46.
Alber
,
I.
, and
Saffman
,
P.
,
1978
, “
Stability of Random Nonlinear Deep-Water Waves With Finite Bandwidth Spectra
,” TRW, Defense and Space System Group, Euclid, OH, Technical Report No. 31326-6035-RU-00.
47.
Janssen
,
P. A. E. M.
,
2003
, “
Nonlinear Four-Wave Interactions and Freak Waves
,”
J. Phys. Oceanogr.
,
33
(
4
), pp.
863
884
.
48.
Fedele
,
F.
,
Cherneva
,
Z.
,
Tayfun
,
M. A.
, and
Guedes Soares
,
C.
,
2010
, “
Nonlinear Schrödinger Invariants and Wave Statistics
,”
Phys. Fluids
,
22
(
3
), p.
036601
.
49.
Onorato
,
M.
, and
Proment
,
D.
,
2011
, “
Nonlinear Interactions and Extreme Waves: Envelope Equations and Experimental Results
,”
Marine Technology and Engineering
,
C.
Guedes Soares
,
Y.
Garbatov
,
N.
Fonseca
, and
A. P.
Teixeira
, eds.,
Taylor & Francis Group
,
London
, pp.
135
146
.
50.
Tayfun
,
M. A.
, and
Lo
,
J.
,
1990
, “
Nonlinear Effects on Wave Envelope and Phase
,”
J. Waterw. Port Coastal Ocean Eng.
,
116
(
1
), pp.
79
100
.
51.
Tomita
,
H.
, and
Kawamura
,
T.
,
2000
, “
Statistical Analysis and Inference From the In-Situ Data of the Sea of Japan With Reference to Abnormal and/or Freak Waves
,”
10th International Offshore and Polar Engineering Conference (ISOPE)
,
Seattle, WA
, pp.
116
122
.
52.
Cherneva
,
Z.
,
Tayfun
,
M. A.
, and
Guedes Soares
,
C.
,
2013
, “
Statistics of Waves With Different Steepness Simulated in a Wave Basin
,”
Ocean Eng.
,
60
, pp.
186
192
.
53.
Toffoli
,
A.
,
Gramstad
,
O.
,
Trulsen
,
K.
,
Monbaliu
,
J.
,
Bitner-Gregersen
,
E. M.
, and
Onorato
,
M.
,
2010
, “
Evolution of Weakly Nonlinear Random Directional Waves: Laboratory Experiments and Numerical Simulations
,”
J. Fluid Mech.
,
664
, pp.
313
336
.
54.
Annenkov
,
S.
, and
Shrira
,
V.
,
2001
, “
On the Predictability of Evolution of Surface Gravity and Gravity-Capillary Waves
,”
Physica D
,
152
, pp.
665
675
.
55.
Bitner-Gregersen
,
E. M.
, and
Toffoli
,
A.
,
2012
, “
On the Probability of Occurrence of Rogue Waves
,”
Nat. Hazards Earth Syst. Sci.
,
12
, pp.
751
762
.
You do not currently have access to this content.