A scale-model blunt-cone capsule intended for ocean splashdown was projected into a water pool to evaluate impact loads and postimpact behavior. In a small region of the speed/angle parameter space, the capsule would reproducibly capsize, flipping forward (pitch-down), despite a pitch-up motion induced at impact. Inspection of high-speed video shows that the resurging central jet of the impact cavity is responsible. Capsize occurs when this jet is energetic enough (for which we develop a simple criterion), and is timed to lift the trailing edge of the vehicle. The same phenomenon was observed on the Apollo capsules, and may be relevant for lifeboat deployment from ships and offshore platforms.

References

References
1.
Seddon
,
C.
, and
Moatamedi
,
M.
,
2006
, “
Review of Water Entry With Applications to Aerospace Structures
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1045
1067
.10.1016/j.ijimpeng.2004.09.002
2.
Stofan
,
E. R.
,
Lorenz
,
R. D.
,
Lunine
,
J. I.
,
Bierhaus
,
E. B.
,
Clark
,
B.
,
Mahaffy
,
P.
, and
Ravine
,
M.
,
2013
, “
TiME–Titan Mare Explorer
,”
IEEE Aerospace Conference
, Big Sky, MT.
3.
Lorenz
,
R. D.
,
Paul
,
M. V.
,
Walsh
,
J.
,
Olds
,
D. W.
,
Kretsch
,
W. E.
,
Bierhaus
,
E. B.
, and
Hibbard
,
K.
,
2015
, “
Instrumented Splashdown Testing of a Scale Model Titan Capsule
,”
Aeronaut. J.
,
119
(
1214
), pp.
409
431
.
4.
Lorenz
,
R. D.
,
2011
, “
Apollo Capsule Capsize Stability During Splashdown: Application of a Cavity Collapse Model
,”
J. Br. Interplanet. Soc.
,
64
, pp.
289
295
.
5.
Truscott
,
T. T.
,
Epps
,
B. P.
, and
Belden
,
J.
,
2014
, “
Water Entry of Projectiles
,”
Annu. Rev. Fluid Mech.
,
46
, pp.
355
378
.10.1146/annurev-fluid-011212-140753
6.
Glasheen
,
J. W.
, and
McMahon
,
T. A.
,
1996
, “
Vertical Water Entry of Disks at Low Froude Numbers
,”
Phys. Fluids
,
8
(
8
), pp.
2078
2083
.10.1063/1.869010
7.
Rosellini
,
L.
,
Hersen
,
F.
,
Clanet
,
C.
, and
Bocquet
,
L.
,
2005
, “
Skipping Stones
,”
J. Fluid Mech.
,
543
, pp.
137
146
.10.1017/S0022112005006373
8.
Boef
,
W. J. C.
,
1992
, “
Launch and Impact of Free-Fall Lifeboats. Part II. Implementation and Applications
,”
Ocean Eng.
,
19
(
2
), pp.
139
159
.10.1016/0029-8018(92)90012-S
9.
Stubbs
,
S. M.
,
1967
, “
Dynamic Model Investigation of Water Pressures and Accelerations Encountered During Landings of the Apollo Spacecraft
,” NASA Technical Memorandum TN D-3980, Sept., NASA, Washington, DC.
10.
Benson
,
H. E.
,
1966
, “
Water Impact of the Apollo Spacecraft
,”
J. Spacecr. Rockets
,
3
(
8
), pp.
1282
1284
.10.2514/3.28640
11.
Melosh
,
H. J.
, and
Ivanov
,
B. A.
,
1997
, “
Impact Crater Collapse
,”
Annu. Rev. Earth Planet. Sci.
,
27
(
1
), pp.
385
415
10.1146/annurev.earth.27.1.385.
12.
Arai
,
M.
,
Khondoker
,
M. R.
, and
Inoue
,
Y.
,
1995
, “
Water Entry Simulation of Free-Fall Lifeboat (First Report: Analysis of Motion and Acceleration
,”
J. Soc. Nav. Archit. Jpn. (SNAJ)
,
178
, pp.
193
201
.
13.
Khondoker
,
R.
,
1998
, “
Effect of Launching Parameters on the Performance of Free-Fall Lifeboats
,”
Nav. Eng. J.
,
110
(
4
), pp.
67
73
.10.1111/j.1559-3584.1998.tb02612.x
14.
Benusiglio
,
A.
,
Quere
,
D.
, and
Clanet
,
C.
,
2014
, “
Explosions at the Water Surface
,”
J. Fluid Mech.
,
752
, pp.
123
139
.10.1017/jfm.2014.255
You do not currently have access to this content.