A scale-model blunt-cone capsule intended for ocean splashdown was projected into a water pool to evaluate impact loads and postimpact behavior. In a small region of the speed/angle parameter space, the capsule would reproducibly capsize, flipping forward (pitch-down), despite a pitch-up motion induced at impact. Inspection of high-speed video shows that the resurging central jet of the impact cavity is responsible. Capsize occurs when this jet is energetic enough (for which we develop a simple criterion), and is timed to lift the trailing edge of the vehicle. The same phenomenon was observed on the Apollo capsules, and may be relevant for lifeboat deployment from ships and offshore platforms.
References
1.
Seddon
, C.
, and Moatamedi
, M.
, 2006
, “Review of Water Entry With Applications to Aerospace Structures
,” Int. J. Impact Eng.
, 32
(7
), pp. 1045
–1067
.10.1016/j.ijimpeng.2004.09.0022.
Stofan
, E. R.
, Lorenz
, R. D.
, Lunine
, J. I.
, Bierhaus
, E. B.
, Clark
, B.
, Mahaffy
, P.
, and Ravine
, M.
, 2013
, “TiME–Titan Mare Explorer
,” IEEE Aerospace Conference
, Big Sky, MT.3.
Lorenz
, R. D.
, Paul
, M. V.
, Walsh
, J.
, Olds
, D. W.
, Kretsch
, W. E.
, Bierhaus
, E. B.
, and Hibbard
, K.
, 2015
, “Instrumented Splashdown Testing of a Scale Model Titan Capsule
,” Aeronaut. J.
, 119
(1214
), pp. 409
–431
.4.
Lorenz
, R. D.
, 2011
, “Apollo Capsule Capsize Stability During Splashdown: Application of a Cavity Collapse Model
,” J. Br. Interplanet. Soc.
, 64
, pp. 289
–295
.5.
Truscott
, T. T.
, Epps
, B. P.
, and Belden
, J.
, 2014
, “Water Entry of Projectiles
,” Annu. Rev. Fluid Mech.
, 46
, pp. 355
–378
.10.1146/annurev-fluid-011212-1407536.
Glasheen
, J. W.
, and McMahon
, T. A.
, 1996
, “Vertical Water Entry of Disks at Low Froude Numbers
,” Phys. Fluids
, 8
(8
), pp. 2078
–2083
.10.1063/1.8690107.
Rosellini
, L.
, Hersen
, F.
, Clanet
, C.
, and Bocquet
, L.
, 2005
, “Skipping Stones
,” J. Fluid Mech.
, 543
, pp. 137
–146
.10.1017/S00221120050063738.
Boef
, W. J. C.
, 1992
, “Launch and Impact of Free-Fall Lifeboats. Part II. Implementation and Applications
,” Ocean Eng.
, 19
(2
), pp. 139
–159
.10.1016/0029-8018(92)90012-S9.
Stubbs
, S. M.
, 1967
, “Dynamic Model Investigation of Water Pressures and Accelerations Encountered During Landings of the Apollo Spacecraft
,” NASA Technical Memorandum TN D-3980, Sept., NASA, Washington, DC.10.
Benson
, H. E.
, 1966
, “Water Impact of the Apollo Spacecraft
,” J. Spacecr. Rockets
, 3
(8
), pp. 1282
–1284
.10.2514/3.2864011.
Melosh
, H. J.
, and Ivanov
, B. A.
, 1997
, “Impact Crater Collapse
,” Annu. Rev. Earth Planet. Sci.
, 27
(1
), pp. 385
–415
10.1146/annurev.earth.27.1.385.12.
Arai
, M.
, Khondoker
, M. R.
, and Inoue
, Y.
, 1995
, “Water Entry Simulation of Free-Fall Lifeboat (First Report: Analysis of Motion and Acceleration
,” J. Soc. Nav. Archit. Jpn. (SNAJ)
, 178
, pp. 193
–201
.13.
Khondoker
, R.
, 1998
, “Effect of Launching Parameters on the Performance of Free-Fall Lifeboats
,” Nav. Eng. J.
, 110
(4
), pp. 67
–73
.10.1111/j.1559-3584.1998.tb02612.x14.
Benusiglio
, A.
, Quere
, D.
, and Clanet
, C.
, 2014
, “Explosions at the Water Surface
,” J. Fluid Mech.
, 752
, pp. 123
–139
.10.1017/jfm.2014.255Copyright © 2015 by ASME
You do not currently have access to this content.