The dynamic coupling analysis between floating platform and mooring/risers is one of the challenging topics in development of oil and gas exploration in deepwater area. In this paper, the dynamic coupled analysis model for a turret-moored floating production storage and offloading (FPSO) is developed. In order to improve the computational efficiency, the proposed asynchronous coupling model is extended to application for FPSO coupled dynamic analysis. In order to validate the developed dynamic coupling analysis model, the vessel global motion and mooring tensions for the turret moored tanker KVLCC2 were tested in China Ship Scientific Research Center (CSSRC) wave basin. In this paper, the numerically predicted coupled response is directly compared with those from model test in time domain. The research focus is in the following: (1) Through comparison of free decay surge motion in calm water/regular wave, the damping effect from mooring on drift motion is validated and confirmed; (2) The physical phenomena of wave drift damping effect on slowly varying surge motion are theoretically explained making use of the related hydrodynamic model and physical model test; (3) In random seas, the simulated vessel motions and mooring tensions generally show fairly good match in time records with model test. But there is phase difference between simulation and measurements after tens of minutes in model test scale, the exact reason is not known yet; and (4) Another interesting phenomena in model test are the existence of unstable horizontal sway and yaw motion, which are not well predicted by current numerical model, the further research is needed.

References

References
1.
Ormberg
,
H.
, and
Larsen
,
K.
,
1998
, “
Coupled Analysis of Floater Motion and Mooring Dynamics for a Turret-Moored Ship
,”
Appl. Ocean Res.
,
20
(
1–2
), pp.
55
67
.10.1016/S0141-1187(98)00012-1
2.
Pauling
,
J. R.
, and
Webster
,
W. C.
,
1986
, “
A Consistent Large-Amplitude Analysis of the Coupled Response of a TLP and Tendon System
,”
5th OMAE Conference
, Tokyo, Japan, Vol.
3
, pp.
126
133
.
3.
Ran
,
Z.
, and
Kim
,
M. H.
,
1997
, “
Nonlinear Coupled Responses of a Tethered Spar Platform in Waves
,”
Int. J. Offshore Polar Eng.
,
7
(
2
), pp.
111
118
.
4.
Kim
,
M. H.
,
Ran
,
Z.
, and
Zheng
,
W.
,
1999
, “
Hull/Mooring/Riser Coupled Dynamic Analysis of a Truss Spar in Time Domain
,”
ISOPE ‘99
, Brest, Vol.
1
, pp.
301
308
.
5.
Ran
,
Z.
,
2000
, “
Coupled Dynamic Analysis of Floating Structures in Waves and Current
,” Ph.D. dissertation, Texas A&M University, College Station, TX.
6.
Ma
,
W.
,
Lee
,
M. Y.
,
Zou
,
J.
, and
Huang
,
E. W.
,
2000
, “
Deepwater Nonlinear Coupled Analysis Tool
,”
Offshore Technology Conference
, Houston, TX, Paper No. OTC 12085.10.4043/12085-MS
7.
Zou
,
J.
,
2003
, “
TLP Hull/Tendon/Riser Coupled Dynamic Analysis in Deepwater
,”
13th International Offshore and Polar Engineering Conference
, Honolulu, HI, pp.
160
166
.
8.
Rover
,
F. E.
,
Rodrigues
,
M. V.
, and
Jacob
,
B. P.
,
2004
, “
Coupled Motion Analysis of a Semisubmersible Platform in Campos Basin
,”
ASME
Paper No. OMAE2004-51120.10.1115/OMAE2004-51120
9.
Low
,
Y. M.
, and
Langley
,
R. S.
,
2006
, “
Time and Frequency Domain Coupled Analysis of Deepwater Floating Production Systems
,”
Appl. Ocean Res.
,
28
(
6
), pp.
371
385
.10.1016/j.apor.2007.05.002
10.
Low
,
Y. M.
, and
Langley
,
R. S.
,
2008
, “
A Hybrid Time/Frequency Domain Approach for Efficient Coupled Analysis of Vessel/Mooring/Riser Dynamics
,”
Ocean Eng.
,
35
(
5–6
), pp.
433
446
.10.1016/j.oceaneng.2008.01.001
11.
Rho
,
J. B.
,
Korobkin
,
A. A.
,
Jung
,
J. J.
,
Shin
,
H. S.
, and
Lee
,
W. S.
,
2007
, “
Coupled Analysis of Deepwater Floating System Including VIV in Time Domain
,”
ASME
Paper No. OMAE2007-29523.10.1115/OMAE2007-29523
12.
Yang
,
M.
,
Teng
,
B.
,
Ning
,
D.
, and
Shi
,
Z.
,
2012
, “
Coupled Dynamic Analysis for Wave Interaction With a Truss Spar and Its Mooring Line/Riser System in Time Domain
,”
Ocean Eng.
,
39
(1), pp.
72
87
.10.1016/j.oceaneng.2011.11.002
13.
Jacob
,
B. P.
,
Bahiense
,
R. A.
,
Correa
,
F. N.
, and
Jacovazzo
,
B. M.
,
2012
, “
Parallel Implementations of Coupled Formulations for the Analysis of Floating Production Systems, Part I: Coupling Formulations
,”
Ocean Eng.
,
55
(
1
), pp.
206
218
.10.1016/j.oceaneng.2012.06.019
14.
Jacob
,
B. P.
,
Franco
,
L. D.
,
Rodrigues
,
M. V.
,
Correa
,
F. N.
, and
Jacovazzo
,
B. M.
,
2012
, “
Parallel Implementations of Coupled Formulations for the Analysis of Floating Production Systems, Part II: Domain Decomposition Strategies
,”
Ocean Eng.
,
55
(
1
), pp.
219
234
.10.1016/j.oceaneng.2012.06.018
15.
Jing
,
X.
,
Webster
,
W. C.
,
Xu
,
Q.
, and
Lambrakos
,
K.
,
2011
, “
Coupled Dynamic Modeling of a Moored Floating Platform With Risers
,”
ASME
Paper No. OMAE2011-49553. 10.1115/OMAE2011-49553
16.
Ma
,
S.
, and
Duan
,
W. Y.
,
2013
, “
Asynchronous Coupling Analysis of Dynamic Response for Deepwater Moored Floating Platform
,”
8th International Workshop on Ship Hydrodynamics
, Seoul, Korea, Paper No. IWSH2013-P3B-3.
17.
Ma
,
S.
, and
Duan
,
W. Y.
,
2014
, “
Dynamic Coupled Analysis of the Floating Platform Using the Asynchronous Algorithm
,”
J. Mar. Sci. Appl.
,
13
(
1
), pp.
85
91
.10.1007/s11804-014-1234-1
18.
Kim
,
M. H.
,
Koo
,
B. J.
,
Mercier
,
R. M.
, and
Ward
,
E. G.
,
2005
, “
Vessel/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared With OTRC Experiment
,”
Ocean Eng.
,
32
(
14–15
), pp.
1780
1802
.10.1016/j.oceaneng.2004.12.013
19.
Wichers
,
J. E. W.
, and
Sluijsm
,
F. V.
,
1979
, “
The Influence of Waves on the Low-Frequency Hydrodynamic Coefficients of Moored Vessels
,”
Offshore Technology Conference
, Houston, TX, Paper No. OTC 3625.10.4043/3625-MS
20.
Chen
,
X. B.
,
2010
,
Hydrostar for Experts User Manual
,
Bureau Veritas
,
Paris
.
21.
Newman
,
J. N.
,
1974
, “
Second-Order, Slowly Varying Forces on Vessels in Irregular Waves
,”
International Symposium on the Dynamics of Marine Vehicles and Structures in Waves
, London, pp.
182
186
.
22.
Chen
,
X. B.
, and
Rezende
,
F.
,
2009
, “
Efficient Computations of Second Order Low Frequency Wave Load
,”
ASME
Paper No. OMAE2009-79522.10.1115/OMAE2009-79522
23.
Newman
,
J. N.
,
1993
, “
Wave Drift Damping of Floating Bodies
,”
J. Fluid Mech.
,
249
(8), pp.
241
259
.10.1017/S0022112093001168
24.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University
,
Cambridge, UK
, p.
160
.
25.
Nossen
,
J.
,
Grue
,
J.
, and
Palm
,
E.
,
1991
, “
Wave Forces on Three-Dimensional Floating Bodies With Small Forward Speed
,”
J. Fluid Mech.
,
227
(12), pp.
135
160
.10.1017/S002211209100006X
26.
Emmerhoff
,
J. K.
, and
Sclavounops
,
D.
,
1992
, “
The Slow-Drift Motion of Arrays of Vertical Cylinders
,”
J. Fluid Mech.
,
242
(
18
), pp.
31
60
.10.1017/S002211209200226X
27.
Zhao
,
R.
, and
Faltinsen
,
O. M.
,
1990
, “
Interaction Between Current, Waves and Marine Structures
,”
Proceedings of the 5th International Conference on Numerical Ship Hydrodynamics
,
K.
Mori
, ed.,
National Academy of Science Press
,
Hiroshima, Japan
, pp.
513
525
.
28.
Grue
,
J.
, and
Palm
,
E.
,
1996
, “
Wave Drift Damping of Floating Bodies in Slow Yaw Motion
,”
J. Fluid Mech.
,
319
(14), pp.
323
352
.10.1017/S0022112096007367
29.
Aranha
,
J. A. P.
,
1991
, “
Wave Groups and Slow Motion of an Ocean Structure
,”
6th International Workshop Water Waves and Floating Bodies
, Woods Hole, MA.
30.
Aranha
,
J. A. P.
,
1994
, “
A Formula for Wave Damping in the Drift of a Floating Body
,”
J. Fluid Mech.
,
275
(18), pp.
147
155
.10.1017/S0022112094002314
31.
Clark
,
P. J.
,
Malenica
,
S.
, and
Molin
,
B.
,
1993
, “
An Heuristic Approach to Wave Drift Damping
,”
Appl. Ocean Res.
,
15
(
1
), pp.
53
55
.10.1016/0141-1187(93)90032-S
32.
Aranha
,
J. A. P.
,
1996
, “
Second-Order Horizontal Steady Forces and Moment on a Floating Body With Small Forward Speed
,”
J. Fluid Mech.
,
313
(8), pp.
39
54
.10.1017/S002211209600211X
33.
Molin
,
B.
,
2012
,
Hydrodynamics of Offshore Structures
,
1st ed.
,
National Defense Industry Press
,
Beijing
, p.
226
(in Chinese).
34.
OCIMF
,
1994
,
Prediction of Wind and Current Loads on VLCCs
,
2nd ed.
,
Oil Companies International Marine Forum
,
London
.
35.
Tahar
,
A.
, and
Kim
,
M. H.
,
2003
, “
Hull/Mooring/Riser Coupled Dynamic Analysis and Sensitivity Study of a Tanker-Based FPSO
,”
Appl. Ocean Res.
,
25
(
1
), pp.
367
382
.10.1016/j.apor.2003.02.001
36.
Ma
,
G.
,
2009
, “
Dynamic Research of Deepwater Mooring Line and Riser Based on Elastic Rod Theory
,” M.S. thesis, Harbin Engineering University, Harbin, China.
37.
Wichers
,
J. E. W.
,
1988
, “
A Simulation Model for a Single Point Moored Tanker
” Publication No. 797, Maritime Research Institute Netherlands, Wageningen, The Netherlands.
38.
Papoulias
,
F. A.
, and
Bernitsas
,
M. M.
,
1988
, “
Autonomous Oscillations, Bifurcations, and Chaotic Response of Moored Vessels
,”
J. Ship Res.
,
32
(
3
), pp.
220
228
.
39.
Chung
,
J. S.
, and
Bernitsas
,
M. M.
,
1992
, “
Dynamics of Two Line Ship Towing/Mooring Systems: Bifurcations, Singularities of Stability Boundaries, Chaos
,”
J. Ship Res.
,
36
(
2
), pp.
123
140
.
40.
Garza-Rios
,
L. O.
, and
Bernitsas
,
M. M.
,
1996
, “
Analytical Expressions of the Stability and Bifurcation Boundaries for General Spread Mooring Systems
,”
J. Ship Res.
,
40
(
4
), pp.
337
350
.
41.
Garza-Rios
,
L. O.
, and
Bernitsas
,
M. M.
,
1999
, “
Slow Motion Dynamics of Turret Mooring and Its Approximations as Single Point Mooring
,”
Appl. Ocean Res.
,
21
(
1
), pp.
27
39
.10.1016/S0141-1187(98)00035-2
42.
Matsuura
,
J. P. J.
,
Bernitsas
,
M. M.
, and
Garza-Rios
,
L. O.
,
2002
, “
Sensitivity and Robustness of Hydrodynamic Mooring Models
,”
ASME J. Offshore Mech. Arct. Eng.
,
124
(4), pp.
179
189
.10.1115/1.1510873
43.
Bernitsas
,
M. M.
,
Matsuura
,
J. P. J.
, and
Andersen
,
T.
,
2004
, “
Mooring Dynamics Phenomena Due to Slowly-Varying Wave Drift
,”
ASME J. Offshore Mech. Arct. Eng.
,
126
(4), pp.
280
286
.10.1115/1.1834620
You do not currently have access to this content.