A three-dimensional (3D) computational fluid dynamics (CFD) model is used to calculate the scour and the deposition pattern around a pier for two different boundary conditions: constant discharge and regular waves. The CFD model solves Reynolds-Averaged Navier–Stokes (RANS) equations in all three dimensions. The location of the free-surface is represented using the level-set method (LSM), which calculates the complex motion of the free-surface in a very realistic manner. For the implementation of waves, the CFD code is used as a numerical wave tank. For the geometric representation of the moveable sediment bed, the LSM is used. The numerical results for the local scour prediction are compared with physical experiments. The decoupling of the hydrodynamic and the morphodynamic time step is tested and found to be a reasonable assumption. For the two situations of local pier scour under current and wave conditions, the numerical model predicts the general evolution (geometry, location, and maximum scour depth) and time development of the scour hole accurately.

References

References
1.
Graf
,
W.
, and
Istiarto
,
I.
,
2002
, “
Flow Pattern in the Scour Hole Around a Cylinder
,”
J. Hydraul. Res.
,
40
(
1
), pp.
13
20
.10.1080/00221680209499869
2.
Olsen
,
N. R. B.
, and
Melaaen
,
M. C.
,
1993
, “
Three-Dimensional Calculation of Scour Around Cylinders
,”
J. Hydraul. Eng.
,
119
(
9
), pp.
1048
1054
.10.1061/(ASCE)0733-9429(1993)119:9(1048)
3.
Olsen
,
N. R. B.
, and
Kjellesvig
,
H. M.
,
1998
, “
Three-Dimensional Numerical Flow Modelling for Estimation of Maximum Local Scour Depth
,”
IAHR J. Hydraul. Res.
,
36
(
4
), pp.
579
590
.10.1080/00221689809498610
4.
Roulund
,
A.
,
Sumer
,
B. M.
,
Fredsøe
,
J.
, and
Michelsen
,
J.
,
2005
, “
Numerical and Experimental Investigation of Flow and Scour Around a Circular Pier
,”
J. Fluid Mech.
,
534
, pp.
351
401
.10.1017/S0022112005004507
5.
Bihs
,
H.
, and
Olsen
,
N. R. B.
,
2008
, “
Three-Dimensional Numerical Modeling of Pier Scour
,”
Proceedings of the Fourth International Conference on Scour and Erosion
, ICSE 4,
Tokyo
, pp.
147
151
.
6.
Bihs
,
H.
,
2011
, “
Three-Dimensional Numerical Modeling of Local Scouring in Open Channel Flow
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
7.
Liu
,
X.
, and
Garcia
,
M.
,
2008
, “
Three-Dimensional Numerical Model With Free Water Surface and Mesh Deformation for Local Sediment Scour
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
134
(
4
), pp.
203
217
.10.1061/(ASCE)0733-950X(2008)134:4(203)
8.
Sumer
,
B.
, and
Fredsøe
,
J.
,
2001
, “
Wave Scour Around a Large Vertical Circular Cylinder
,”
J. Waterw., Port, Coastal, Ocean Eng.
,
127
(
3
), pp.
125
134
.10.1061/(ASCE)0733-950X(2001)127:3(125)
9.
Link
,
O.
,
2006
, “
Untersuchung der Kolkung an einem schlanken zylindrischen Pfeiler in sandigem Boden
,”
Wasser Abwasser GWF
,
147
(
6
), pp.
421
422
.
10.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
11.
Chorin
,
A.
,
1968
, “
Numerical Solution of the Navier Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
12.
van der Vorst
,
H.
,
1992
, “
BI-GStab: A Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.10.1137/0913035
13.
Jiang
,
G. S.
, and
Shu
,
C. W.
,
1996
, “
Efficient Implementation of Weighted Eno Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.10.1006/jcph.1996.0130
14.
Shu
,
C. W.
, and
Gottlieb
,
S.
,
1998
, “
Total Variation Diminishing Runge–Kutta Schemes
,”
Math. Comput.
,
67
(
221
), pp.
73
85
.10.1090/S0025-5718-98-00913-2
15.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.10.1016/0021-9991(88)90002-2
16.
Bihs
,
H.
,
Ong
,
M.
,
Kamath
,
A.
, and
Arntsen
,
Ø. A.
,
2013
, “
A Level Set Method Based Numerical Wave Tank for Calculation of Wave Forces on Horizontal and Vertical Cylinders
,”
Proceedings of the 7th National Conference on Computation Mechanics MekIT‘13
,
Trondheim, Norway
, pp.
59
70
.
17.
Jacobsen
,
N. G.
,
Fuhrman
,
D. R.
, and
Fredsøe
,
J.
,
2011
, “
A Wave Generation Toolbox for the Open-Source CFD Library: Openfoam
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1073
1088
.10.1002/fld.2726
18.
Zeng
,
J.
,
Constantinescu
,
G.
, and
Weber
,
L.
,
2005
, “
A Fully 3D Non-Hydrostatic Model for Prediction of Flow, Sediment Transport and Bed Morphology in Open Channels
,”
Proceedings of the 31st IAHR Congress
, pp.
1327
1338
.
19.
Engelund
,
F.
, and
Fredsøe
,
J.
,
1976
, “
A Sediment Transport Model for Straight Alluvial Channels
,”
Nord. Hydrol.
,
7
(
5
), pp.
293
306
.10.2166/nh.1976.019
20.
Einstein
,
H. A.
,
1950
,
The Bed-Load Function for Sediment Transportation in Open Channel Flows
,
U.S. Department of Agriculture
, Washington, DC.
21.
van Rijn
,
L. C.
,
1984
, “
Sediment Transport—Part II: Suspended Load Transport
,”
J. Hydraul. Eng.
,
110
(
11
), pp.
1613
1641
.10.1061/(ASCE)0733-9429(1984)110:11(1613)
22.
Shields
,
A.
,
1936
, “
Anwendungen der Ähnlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung
,” Mitteilungen der Preuischen Versuchsanstalt für Wasser-, Erdund Schiffbau, Berlin.
23.
Dey
,
S.
,
2001
, “
Experimental Studies on Incipient Motion of Sediment Particles
,”
J. Sediment. Res.
,
16
(
3
), pp.
391
398
.
24.
Burkow
,
M.
,
2010
, “
Numerische simulation stromungsbedingten sedimenttransports und der entstehenden gerinnebettformen
,” Master's thesis, Mathematisch-Naturwissenschaftlichen Fakultat der Rheinischen Friedrich-Wilhelms-Universitat Bonn, Bonn, Germany.
25.
Wu
,
W.
,
Rodi
,
W.
, and
Wenka
,
T.
,
2000
, “
3D Numerical Modeling of Flow and Sediment Transport in Open Channels
,”
J. Hydraul. Eng.
,
126
(
1
), pp.
4
15
.10.1061/(ASCE)0733-9429(2000)126:1(4)
26.
Jacobsen
,
N. G.
,
Fredsoe
,
J.
, and
Jensen
,
J. H.
,
2014
, “
Formation and Development of a Breaker Bar Under Regular Waves—Part 1: Model Description and Hydrodynamics
,”
Coastal Eng.
,
88
, pp.
182
193
.10.1016/j.coastaleng.2013.12.008
27.
Liang
,
D.
, and
Cheng
,
L.
,
2005
, “
Numerical Modeling of Flow and Scour Below a Pipeline in Currents: Part I: Flow Simulation
,”
Coastal Eng.
,
52
(
1
), pp.
25
42
.10.1016/j.coastaleng.2004.09.002
28.
Liang
,
D.
,
Cheng
,
L.
, and
Li
,
F.
,
2005
, “
Numerical Modeling of Flow and Scour Below a Pipeline in Currents—Part II: Scour Simulation
,”
Coastal Eng.
,
52
(
1
), pp.
43
62
.10.1016/j.coastaleng.2004.09.001
You do not currently have access to this content.