The paper investigates the characteristics of response amplitude operators (RAO) or transfer function of a floating body in frequency domain for coupled sway, roll and yaw motions in sinusoidal waves. The floating body is considered to be initially at rest and waves act as beam to the floating body with varying frequency (ω) between 0.3 rad/s and 1.2 rad/s. The hydrodynamic coefficients (HC) are computed using strip theory formulation and the general expression of RAO is derived. The behavior of RAO under coupled conditions is examined by considering two asymptotic cases, corresponding to ω0 and ω. For the intermediate frequency range, analytical expression for system frequency is derived. The effects of viscous damping for uncoupled and coupled transfers have been compared with the result of nonviscous case. A mathematical analogy with respect to Mathieu and Hill equations has been established using frequency based classifications of governing equations. This modeling approach can provide useful guidelines to determine RAO for coupled motions and computing of wave loads and sensitivity analysis with respect to initial conditions of a floating body for the wide range of frequencies.

References

References
1.
Weinblum
,
G. P.
, and
St. Denis
,
M.
,
1950
, “
On the Motions of Ships at Sea
,”
Soc. Nav. Archit. Mar. Eng., Trans.
,
58
, pp.
184
231
.
2.
Cartwright
,
D. E.
, and
Rydill
,
L. J.
,
1957
, “
The Rolling and Pitching of a Ship at Sea. A Direct Comparison Between Calculated and Recorded Motions of a Ship in Sea Waves
,”
Trans. R. Inst. Nav. Archit.
,
99
(
1
), pp.
100
135
.
3.
Cummins
,
W. E.
,
1962
, “
The Impulse Response Function and Ship Motions
,”
Schiffstechnik
,
9
, pp.
101
109
.
4.
St. Denis
,
M.
, and
Pierson
,
W. J.
,
1953
, “
On the Motion of Ships in Confused Seas
,”
Soc. Nav. Archit. Mar. Eng., Trans.
,
61
, pp.
280
354
.
5.
Frank
,
W.
, and
Salvesen
,
N.
,
1970
, “
The Frank Close-Fit Ship-Motion Computer Program
,” NSRDC, Washington, DC, Report No. 3289.
6.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ship and Offshore Structures
,
Cambridge University Press
,
Cambridge, London
.
7.
Faltinsen
,
O. M.
,
Newman
,
J. N.
, and
Vinje
,
T.
,
1995
, “
Nonlinear Wave Loads on a Slender Vertical Cylinder
,”
J. Fluid Mech.
,
289
, pp.
179
198
.10.1017/S0022112095001297
8.
Holappa
,
K. W.
, and
Falzarano
,
J. M.
,
1998
, “
Application of Extended State Space to Nonlinear Ship Rolling
,”
Ocean Eng.
,
26
(
3
), pp.
227
240
.10.1016/S0029-8018(97)10027-0
9.
Jacobsen
,
K.
, and
Clauss
,
G. F.
,
2006
, “
Time-Domain Simulations of Multi-Body Systems in Deterministic Wave Trains
,”
ASME
Paper No. OMAE2006-92348.10.1115/OMAE2006-92348
10.
Korvin-Kroukovsky
,
B. V.
,
1955
, “
Investigation of Ship Motions in Regular Waves
,”
Soc. Nav. Archit. Mar. Eng., Trans.
,
63
, pp.
386
435
.
11.
Korvin-Kroukovsky
,
B. V.
, and
Lewis
,
E. V.
,
1955
, “
Ship Motions in Regular and Irregular Seas
,”
Int. Shipbuild. Prog.
,
2
, pp.
81
95
.
12.
Kukkanen
,
T.
,
2010
, “
Wave Load Predictions for Marine Structures
,”
J. Struct. Mech. (Rakenteiden Mekaniikka)
,
43
(
3
), pp.
150
166
.
13.
Kukkanen
,
T.
, and
Mikkola
,
T. P. J.
,
2004
, “
Fatigue Assessment by Spectral Approach for the ISSC Comparative Study of the Hatch Cover Bearing Pad
,”
Mar. Struct.
,
17
(
1
), pp.
75
90
.10.1016/j.marstruc.2004.04.001
14.
Lewis
,
E. V.
, and
Numata
,
E.
,
1957
, “
Ship Model Test in Regular and Irregular Seas
,” Stevens Institute of Technology, Hoboken, NJ, Experimental Towing Tank Report No. 656.
15.
Taylan
,
M.
,
2000
, “
The Effect of Nonlinear Damping and Restoring in Ship Rolling
,”
Ocean Eng.
,
27
(
9
), pp.
921
932
.10.1016/S0029-8018(99)00026-8
16.
Price
,
W. C.
, and
Bishop
,
R. E. D.
,
1974
,
Probabilistic Theory of Ship Dynamics
,
Chapman and Hall
,
London
.
17.
Taylan
,
M.
,
1999
, “
Solution of the Nonlinear Roll Model by a Generalized Asymptotic Method
,”
Ocean Eng.
,
26
(
11
), pp.
1169
1181
.10.1016/S0029-8018(98)00064-X
18.
Surendran
,
S.
, and
Reddy
,
J. R.
,
2002
, “
Roll Dynamics of a Ro–Ro Ship
,”
Int. Shipbuild. Prog.
,
49
(
4
), pp.
301
320
.
19.
Surendran
,
S.
, and
Reddy
,
J. V. R.
,
2003
, “
Numerical Simulation of Ship Stability for Dynamic Environment
,”
Ocean Eng.
,
30
(
10
), pp.
1305
1317
.10.1016/S0029-8018(02)00109-9
20.
Newman
,
J. N.
,
1962
, “
The Exciting Forces on Fixed Bodies in Waves
,”
J. Ship Res.
,
6
(
3
), pp.
10
18
21.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
MIT Press
,
Cambridge, MA
.
22.
Newman
,
J. N.
,
1990
, “
The Quest for a Three-Dimensional Theory of Ship-Wave Interactions
,”
Philos. Trans. R. Soc. London, Ser. A
,
334
(
1634
), pp.
213
227
.10.1098/rsta.1991.0009
23.
Clauss
,
G.
,
Lehmann
,
E.
, and
Östergaard
,
C.
,
1992
,
Offshore Structures, Volume I: Conceptual Design and Hydrodynamics
,
Springer-Verlag
,
London
.
24.
Clauss
,
G. F.
,
Klein
,
M.
,
Sprenger
,
F.
, and
Testa
,
D.
,
2010
, “
Evaluation of Critical Conditions in Offshore Vessel Operation by Response Based Optimization Procedures
,”
ASME
Paper No. OMAE2010-21071.10.1115/OMAE2010-21071
25.
Cotton
,
B.
, and
Spyrou
,
K. J.
,
2001
, “
An Experimental Study of Nonlinear Behaviour in Roll and Capsize
,”
Int. Shipbuild. Prog.
,
48
(
1
), pp.
5
18
.
26.
Low
,
M.
, and
Grime
,
A. J.
,
2011
, “
Extreme Response Analysis of Floating Structures Using Coupled Frequency Domain Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
4
), p.
031601
.10.1115/1.4002734
27.
Das
,
S. K.
,
Sahoo
,
P. K.
, and
Das
,
S. N.
,
2006
, “
Determination of Roll Motion for a Floating Body in Regular Waves
,”
Proc. Inst. Mech. Eng., Part M
,
220
(
1
), pp.
41
48
.10.1243/14750902M01904
28.
Salvesen
,
N.
,
Tuck
,
E. O.
, and
Faltinsen
,
O. M.
,
1970
, “
Ship Motions and Sea Loads
,”
Soc. Nav. Archit. Mar. Eng., Trans.
,
78
, pp.
250
287
.
29.
Tick
,
L. J.
,
1959
, “
Differential Equations With Frequency-Dependent Coefficients
,”
J. Ship Res.
,
3
(
2
), pp.
45
46
.
30.
Vugts
,
J. H.
,
1968
, “
The Hydrodynamic Coefficients for Swaying, Heaving and Rolling Cylinders in a Free Surface
,” Shipbuilding Laboratory, Delft University of Technology, Delft, The Netherlands, Report No. 194.
31.
Das
,
S. K.
,
Das
,
S. N.
, and
Sahoo
,
P. K.
,
2008
, “
Investigation of Coupled Sway, Roll and Yaw Motions of a Floating Body: Numerical Modelling for Non-Linear Roll Restoring
,”
Ships Offshore Struct.
,
3
(
1
), pp.
49
56
.10.1080/17445300701733488
32.
Das
,
S. N.
,
Shiraishi
,
S.
, and
Das
,
S. K.
,
2010
, “
Mathematical Modeling of Sway, Roll and Yaw Motions: Order-Wise Analysis to Determine Coupled Characteristics and Numerical Simulation for Restoring Moment's Sensitivity Analysis
,”
Acta Mech.
,
213
(
3–4
), pp.
305
322
.10.1007/s00707-009-0278-9
33.
Baghfalaki
,
M.
,
Das
,
S. K.
, and
Das
,
S. N.
,
2012
, “
Analytical Model to Determine Response Amplitude Operator of a Floating Body for Coupled Roll and Yaw Motions and Frequency Based Analysis
,”
World Scientific
4
(
4
), pp.
1
20
.10.1142/S1758825112500445
34.
Das
,
S. K.
, and
Baghfalaki
,
M.
,
2014
, “
Mathematical Modelling of Response Amplitude Operator for Roll Motion of a Floating Body: Analysis in Frequency Domain With Numerical Validation
,”
J. Mar. Sci. Appl.
,
13
, pp.
143
157
.10.1007/s11804-014-1249-7
35.
Das
,
S. K.
, and
Das
,
S. N.
,
2006
, “
Modelling and Analysis of Coupled Nonlinear Oscillations of Floating Body in Two Degrees of Freedom
,”
Acta Mech.
,
181
(
1–2
), pp.
31
42
.10.1007/s00707-005-0277-4
36.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
37.
Das
,
S. N.
, and
Das
,
S. K.
,
2005
, “
Mathematical Model for Coupled Roll and Yaw Motions of a Floating Body in Regular Waves Under Resonant and Non-Resonant Conditions
,”
Appl. Math. Modell.
,
29
(
1
), pp.
19
34
.10.1016/j.apm.2004.07.006
You do not currently have access to this content.