In this paper, the stochastic parameters describing a nonlinear ocean vessel steering model are identified, resorting to an extended Kalman filter (EKF). The proposed method is applied to a second-order modified Nomoto model for vessel steering and that is derived from first physics principles. Furthermore, the results obtained resorting to a realistic numerical simulator of nonlinear vessel steering are also illustrated in this study.

References

References
1.
Bowditch
,
N.
, and
1995
, “
The American Practical Navigator
,”
An Epitome of Navigation
, Vol.
9
,
2nd ed.
,
N.
Bowditch
, ed.,
National Imagery and Mapping Agency
,
Bethesda, MD
.
2.
Astrom
,
K. J.
, and
Kalstrom
,
C. G.
,
1976
, “
Identification of Ship Steering Dynamics
,”
Automatica
,
12
(
1
), pp.
9
12
.10.1016/0005-1098(76)90064-9
3.
Ma
,
F. C.
, and
Tong
,
S. H.
,
2003
, “
Real-Time Parameters Identification of Ship Dynamic Using the Extended Kalman Filter and the Second Order Filter
,”
2003 IEEE Conference on Control Applications
, Vol.
2
, pp.
1245
1250
.
4.
Casado
,
M. H.
,
Ferreiro
,
R.
, and
Velasco
,
F. J.
,
2007
, “
Identification of Nonlinear Ship Model Parameters Based on the Turning Circle Test
,”
J. Ship Res.
,
51
(
2
), pp.
174
181
.
5.
Sheng
,
L.
,
Jia
,
S.
,
Bing
,
L.
, and
Gao-Yun
,
L.
,
2008
, “
Identification of Ship Steering Dynamics Based on ACA-SVR
,”
2008 IEEE International Conference on Mechatronics and Automation
, pp.
514
519
.
6.
Sutulo
,
S.
,
Moreira
,
L.
, and
Guedes Soares
,
C.
,
2002
, “
Mathematical Models of Ship Path Prediction in Manoeuvring Simulation Systems
,”
Ocean Eng.
,
29
(
1
), pp.
1
19
.10.1016/S0029-8018(01)00023-3
7.
Skjetne
,
R.
,
Smogeli
,
O. N.
, and
Fossen
,
T. I.
,
2004
, “
A Nonlinear Ship Manoeuvering Model: Identification and Adaptive Control With Experiments for a Model Ship
,”
Model., Identif. Control
,
25
(
1
), pp.
3
27
.10.4173/mic.2004.1.1
8.
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2014
, “
An Algorithm for Offline Identification of Ship Manoeuvring Mathematical Models After Free-Running Tests
,”
Ocean Eng.
,
79
, pp.
10
25
.10.1016/j.oceaneng.2014.01.007
9.
Nomoto
,
K.
,
Taguchi
,
T.
,
Honda
,
K.
, and
Hirano
,
S.
,
1957
, “
On the Steering Qualities of Ships
,”
Int. Shipbuilding Prog.
,
4
, pp.
354
370
.
10.
Tzeng
,
C.
, and
Chen
,
J.
,
1999
, “
Fundamental Properties of Linear Ship Steering Dynamic Models
,”
J. Mar. Sci. Technol.
,
7
(
2
), pp.
79
88
.
11.
Journee
,
J. M. J.
,
1970
, “
A Simple Method for Determining the Manoeuvring Indices k and t From Zigzag Trial Data
,” Report No. 0267.
12.
Yoon
,
H. K.
, and
Rhee
,
K. P.
,
2003
, “
Identification of Hydrodynamic Coefficients in Ship Maneuvering Equations of Motion by Estimation-Before-Modeling Technique
,”
Ocean Eng.
,
30
(
18
), pp.
2379
2404
.10.1016/S0029-8018(03)00106-9
13.
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2004
, “
Synthesis of Experimental Designs of Manoeuvring Captive-Model Tests With Large Number of Factors
,”
J. Mar. Sci. Technol.
,
9
(
1
), pp.
32
42
.10.1007/s00773-003-0169-z
14.
Ferrari
,
V.
,
Perera
,
L. P.
,
Santos
,
F. P.
,
Hinostroza
,
M. A.
,
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2014
, “
Initial Experimental Tests of a Research-Oriented Self-Running Model
,”
Maritime Engineering and Technology
,
C.
Guedes Soares
, and
TAR Santos
, eds.,
Taylor & Francis Group
,
London, UK
, pp.
913
918
.10.1201/b17494-122
15.
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2002
, “
An Algorithm for Optimized Design of Manoeuvring Experiments
,”
J. Ship Res.
,
46
(
3
), pp.
214
227
.
16.
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2006
, “
Development of a Multifactor Regression Model of Ship Maneuvering Forces Based on Optimized Captive-Model Tests
,”
J. Ship Res.
,
50
(
4
), pp.
311
333
.
17.
The Manoeuvring Committee
,
2005
, “
Final Report and Recommendations to the 24th ITTC
,” Vol.
1
,
UK
, pp.
137
198
.
18.
Sutulo
,
S.
, and
Guedes Soares
,
C.
,
2011
, “
Mathematical Models for Simulation of Manoeuvring Performance of Ships
,”
Marine Technology and Engineering
,
G.
Soares
,
C.
Garbatov
,
Y.
Fonseca
, and
A. P.
Teixeira
, eds.,
Taylor & Francis Group
,
London
, pp.
661
698
.
19.
Abkowitz
,
M. A.
,
1980
, “
Measurement of Hydrodynamic Characteristics From Ship Maneuvering Trials by System Identification
,”
SNAME Trans.
,
88
, pp.
283
318
.
20.
Guedes Soares
,
C.
,
Sutulo
,
S.
,
Francisco
,
R. A.
,
Santos
,
F. M.
, and
Moreira
,
L.
,
1999
, “
Full-Scale Measurements of Manoeuvring Capabilities of a Catamaran
,”
International Conference on Hydrodynamics of High Speed Craft
,
London
, pp.
1
12
.
21.
Moreira
,
L.
, and
Guedes Soares
,
C.
,
2003
, “
Dynamic Model of Maneuvrability Using Recursive Neural Networks
,”
Ocean Eng.
,
30
(
13
), pp.
1669
1697
.10.1016/S0029-8018(02)00147-6
22.
Chiu
,
F. C.
,
Chang
,
T. L.
,
Go
,
J.
,
Chou
,
S. K.
, and
Chen
,
W. C.
,
2004
, “
A Recursive Neural Networks Model for Ship Maneuverability Prediction
,”
MTTS/IEEE TECHNO-OCEAN'04
,
3
, pp.
1211
1218
.10.1109/OCEANS.2004.1405752
23.
Rajesh
,
G.
, and
Bhattacharyya
,
S. K.
,
2008
, “
System Identification for Nonlinear Maneuvering of Large Tankers Using Artificial Neural Network
,”
Appl. Ocean Res.
,
30
(
4
), pp.
256
263
.10.1016/j.apor.2008.10.003
24.
Moreira
,
L.
,
Fossen
,
T. I.
, and
Guedes Soares
,
C.
,
2007
, “
Path Following Control System for a Tanker Ship Model
,”
Ocean Eng.
,
34
(
14–15
), pp.
2074
2085
.10.1016/j.oceaneng.2007.02.005
25.
Perera
,
L. P.
,
Carvalho
,
J. P.
, and
Guedes Soares
,
C.
,
2011
, “
Fuzzy-Logic Based Decision Making System for Collision Avoidance of Ocean Navigation Under Critical Collision Conditions
,”
J. Mar. Sci. Technol.
,
16
(
1
), pp.
84
99
.10.1007/s00773-010-0106-x
26.
Perera
,
L. P.
,
Carvalho
,
J. P.
, and
Guedes Soares
,
C.
,
2012
, “
Intelligent Ocean Navigation & Fuzzy-Bayesian Decision-Action Formulation
,”
IEEE J. Oceanic Eng.
,
37
(
2
), pp.
204
219
.10.1109/JOE.2012.2184949
27.
Perera
,
L. P.
,
Ferrari
,
V.
,
Santos
,
F. P.
,
Hinostroza
,
M. A.
, and
Guedes Soares
,
C.
,
2014
, “
Experimental Evaluations on Ship Autonomous Navigation & Collision Avoidance by Intelligent Guidance
,”
IEEE J. Oceanic Eng.
, PP(
9
), pp.
1
14
.10.1109/JOE.2014.2304793
28.
Davidson
,
K. S. M.
, and
Schiff
,
L. I.
,
1946
, “
Turning and Course Keeping Qualities
,” SNAME,
55
.
29.
Amerongen
,
J. V.
, and
Cate
,
A. J. U. T.
,
1975
, “
Model Reference Adaptive Autopilots for Ship
,”
Automatica
,
11
(
5
), pp.
441
449
.10.1016/0005-1098(75)90020-5
30.
Urgarala
,
S.
,
Dolence
,
E.
, and
Li
,
K.
,
2007
, “
Constrained Extended Kalman Filter for Nonlinear State Estimation
,”
8th International IFAC Symposium on Dynamic and Control of Process Systems
,
Cancun, Mexico
, pp.
63
68
.
31.
Gelb
,
A.
,
Kasper
,
J. F.
,
Nash
,
R. A.
, Jr.
,
Price
,
C. F.
, Jr.
, and
Sutherland
,
A. A.
, Jr.
,
2001
,
Applied Optimal Estimation
,
MIT
, Cambridge,
MA
.
32.
Tin
,
C.
, and
Poon
,
C.
,
2005
, “
Internal Models in Sensorimotor Integration: Perspectives From Adaptive Control Theory
,”
J. Neural Eng.
,
2
(
3
), pp.
147
163
.10.1088/1741-2560/2/3/S01
33.
Cuong
,
H. T.
, and
Parsons
,
M. G.
,
1981
, “
An Adaptive Surface Ship Path Control System
,”
Workshop on Applications of Adaptive Systems Theory
,
Yale University
,
New Haven, CT
.
34.
Cuong
,
H. T.
,
1982
, “
Investigation of Methods for Adaptive Path Control of Surface Ships
,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI.
You do not currently have access to this content.