Horizontal sectional loads (horizontal shear force and horizontal bending moment) and torsional moment are more difficult to predict with potential flow methods than vertical loads, especially in stern-quartering waves. Accurate computation of torsional moment is especially important for large modern container ships. The three-dimensional (3D) seakeeping code GL Rankine has been applied previously to the computation of vertical loads in head, following and oblique waves; this paper addresses horizontal loads and torsional moment in oblique waves at various forward speeds for a modern container ship. The results obtained with the Rankine source-patch method are compared with the computations using zero-speed free-surface Green functions and with model experiments.

References

References
1.
Paik
,
J. K.
,
Thayamballi
,
A. K.
,
Pedersen
,
P. T.
, and
Park
,
Y. I.
,
2001
, “
Ultimate Strength of Ship Hulls Under Torsion
,”
Ocean Eng. J.
,
28
, pp.
1097
1133
.10.1016/S0029-8018(01)00015-4
2.
Bureau Veritas
,
2008
, “
Guidelines for Structural Analysis of Container Ships
,” Guidance Note NI 532 DT R00E.
3.
Det Norske Veritas
,
2013
, “
Strength Analysis of Hull Structures in Container Carriers
,” Classification Notes No. 31.7.
4.
Germanischer Lloyd
,
2011
, “
Guidelines for Global Strength Analysis of Container Ships
,”
Rules for Classification and Construction V: Analysis Techniques
,
Germanischer Lloyd
,
Hamburg, Germany
, Chap. 1.1.
5.
International Association of Classification Societies
,
2013
, “
EDW Definition of Extreme Loads
,” Harmonised CSR, Pt. 1, Rev. 2,
International Association of Classification Societies
, London, UK, Sec. 2, Chap. 4.
6.
International Association of Classification Societies
,
2012
, “
Equivalent Design Wave (EDW) for Fatigue Loads
,” Harmonised CSR, Pt. 1,
International Association of Classification Societies
, London, UK, Sec. 2, Chap. 4.
7.
Seakeeping Committee
,
1981
, “
Final Report and Recommendations to the 16th ITTC
,” Proceedings of the 16th International Towing Tank Conference, (ITTC81).
8.
Gadd
,
G. E.
,
1976
, “
A Method of Computing the Flow and Surface Wave Pattern Around Full Forms
,”
Trans. R. Inst. Nav. Archit.
,
113
, pp.
207
219
.
9.
Dawson
,
C. W.
,
1977
, “
A Practical Computer Method for Solving Ship-Wave Problems
,”
Proceedings of the 2nd International Conference on Numerical Ship Hydrodynamics
,
Berkley, CA
, pp.
30
38
.
10.
Bai
,
K. J.
, and
Yeung
,
R. W.
,
1974
, “
Numerical Solutions to Free-Surface Flow Problems
,”
Proceedings of the 10th Symposium on Naval Hydrodynamics
,
Cambridge, MA
, pp.
609
647
.
11.
Nakos
,
D. E.
,
1990
, “
Ship Wave Patterns and Motions by a Three Dimensional Rankine Panel Method
,” Ph.D. thesis, MIT, Cambridge, MA.
12.
Iijima
,
K.
,
Shigemi
,
T.
,
Miyake
,
R.
, and
Kumano
,
A.
,
2004
, “
A Practical Method for Torsional Strength Assessment of Container Ship Structures
,”
Mar. Struct.
,
17
(
5
), pp.
355
384
.10.1016/j.marstruc.2004.08.011
13.
Hong
,
S.
,
Kyoung
,
J.
,
Kim
,
Y.
,
Song
,
K.
,
Kim
,
S.
,
Malenica
,
S.
,
Lindgren
,
M.
,
Rathje
,
H.
, and
Ge
,
C.
,
2008
, “
Validation of Wave Loads on a Large Container Ship in Oblique Waves
,”
Proceedings of the 6th Osaka Colloquium on Seakeeping and Stability of Ships
,
Osaka, Japan
, Mar. 26–29, pp.
109
117
.
14.
Song
,
K.
,
Ha
,
T.
,
Kim
,
M.
,
Kim
,
Y.
,
Kim
,
K. H.
,
Shin
,
K.
,
Song
,
M. J.
,
Sun
,
J.
, and
Yang
,
J. H.
,
2008
, “
Comparative Study on Seakeeping Analysis for Practical Ship Structural Design
,”
Proceedings of the 6th Osaka Colloquium on Seakeeping and Stability of Ships
,
Osaka, Japan
, Mar. 26–29, pp.
53
58
.
15.
Song
,
M.
,
Kim
,
K. H.
, and
Kim
,
Y.
,
2010
, “
Analysis of Linear and Nonlinear Structural Loads on a 6500 TEU Container Ship by a Time-Domain Rankine Panel Method
,”
Proceedings of the 20th International Offshore & Polar Engineering Conference ISOPE2010
,
Beijing, China
, June 20–25, pp.
379
384
.
16.
Kim
,
Y.
,
Kim
,
K.-H.
,
Song
,
M.-J.
,
Kim
,
M.-S.
,
Sun
,
J.
,
Song
,
K.-H.
,
Shin
,
K.-S.
, and
Yang
,
J.-H.
,
2008
, “
Comparative Study on Time-Domain Analysis of Ship Motions and Structural Loads in Waves
,”
Proceedings of the 18th International Offshore & Polar Engineering Conference, (ISOPE2008
),
Vancouver, Canada
, July 6–11, pp.
335
340
.
17.
Zhu
,
T.
,
Xu
,
L.
,
Singh
,
S. P.
, and
Ha
,
T. B.
,
2004
, “
A Comparative Study of 3-D Methods With Experimental Results for Seakeeping Analysis
,”
Proceedings of the 6th International Conference on Hydrodynamics
,
Perth, Australia
, Nov. 24–26, pp.
173
179
.
18.
Zhu
,
T.
,
Xu
,
L.
,
Singh
,
S. P.
, and
Ha
,
T. B.
,
2005
, “
Comprehensive Comparative Studies on 3-D Seakeeping Methods With Experimental Results Regarding a Late Post-Panamax Container Ship
,”
Proceedings of the 8th International Conference on Fast Sea Transportation, (FAST 2005
),
St. Petersburg, Russia
, June 27–30.
19.
von Graefe
,
A.
,
el Moctar
,
O.
,
Oberhagemann
,
J.
, and
Shigunov
,
V.
,
2014
, “
Linear and Nonlinear Sectional Loads With Potential and Field Methods
,”
ASME J. Offshore Mech. Arct. Eng.
,
136
(
3
), p.
031602
.10.1115/1.4026885
20.
Söding
,
H.
,
1993
, “
A Method for Accurate Force Calculation in Potential Flow
,”
Ship Technol. Res.
,
40
(
4
), pp.
176
186
.
21.
Hachmann
,
D.
,
1991
, “
Calculation of Pressures on a Ship's Hull in Waves
,”
Ship Technol. Res.
,
38
(3), pp.
111
133
.
22.
Söding
,
H.
,
2011
, “
Recent Progress in Potential Flow Calculations
,”
Proceedings of the 1st International Symposium on Naval Architecture and Maritime INTNAM 2011
,
Istanbul, Turkey
, Oct. 24–25, pp. 17–31.
23.
Söding
,
H.
,
von Graefe
,
A.
,
el Moctar
,
O.
, and
Shigunov
,
V.
,
2012
, “
Rankine Source Method for Seakeeping Predictions
,”
ASME
Paper No. OMAE2012-83450.10.1115/OMAE2012-83450
24.
Telste
,
J. G.
, and
Noblesse
,
F.
,
1986
, “
Numerical Evaluation of the Green Function of Water-Wave Radiation and Diffraction
,”
J. Ship Res.
,
30
(
2
), pp.
69
84
.
You do not currently have access to this content.