In the reliability engineering and design of offshore structures, probabilistic approaches are frequently adopted. They require the estimation of extreme quantiles of oceanographic data based on the statistical information. Due to strong correlation between such random variables as, e.g., wave heights and wind speeds (WS), application of the multivariate, or bivariate in the simplest case, extreme value theory is sometimes necessary. The paper focuses on the extension of the average conditional exceedance rate (ACER) method for prediction of extreme value statistics to the case of bivariate time series. Using the ACER method, it is possible to provide an accurate estimate of the extreme value distribution of a univariate time series. This is obtained by introducing a cascade of conditioning approximations to the true extreme value distribution. When it has been ascertained that this cascade has converged, an estimate of the extreme value distribution has been obtained. In this paper, it will be shown how the univariate ACER method can be extended in a natural way to also cover the case of bivariate data. Application of the bivariate ACER method will be demonstrated for measured coupled WS and wave height data.

References

References
1.
Gumbel
,
E. J.
,
1960
, “
Multivariate Extremal Distributions
,”
Bull. l'Institut Int. Stat.
,
37
(
2
), pp.
471
475
.
2.
Gumbel
,
E. J.
,
1960
, “
Bivariate Exponential Distributions
,”
J. Am. Stat. Assoc.
,
55
(
292
), pp.
698
707
.10.1080/01621459.1960.10483368
3.
Gumbel
,
E. J.
,
1961
, “
Bivariate Logistic Distributions
,”
J. Am. Stat. Assoc.
,
56
(
294
), pp.
335
349
.10.1080/01621459.1961.10482117
4.
Gumbel
,
E. J.
, and
Mustafi
,
C. K.
,
1967
, “
Some Analytical Properties of Bivariate Extremal Distributions
,”
J. Am. Stat. Assoc.
,
62
(
318
), pp.
569
588
.10.1080/01621459.1967.10482930
5.
Coles
,
S. G.
, and
Tawn
,
J. A.
,
1991
, “
Modeling Extreme Multivariate Events
,”
J. R. Stat. Soc. B
,
53
(
2
), pp.
377
392
.
6.
Coles
,
S. G.
, and
Tawn
,
J. A.
,
1994
, “
Statistical Methods for Multivariate Extremes: An Application to Structural Design
,”
J. R. Stat. Soc. C
,
43
(
1
), pp.
1
48
.
7.
Zachary
,
S.
,
Feld
,
G.
,
Ward
,
G.
, and
Wolfram
,
J.
,
1998
, “
Multivariate Extrapolation in the Offshore Environment
,”
Appl. Ocean Res.
,
20
(
5
), pp.
273
295
.10.1016/S0141-1187(98)00027-3
8.
de Haan
,
L.
, and
de Ronde
,
J.
,
1998
, “
Sea and Wind: Multivariate Extremes at Work
,”
Extremes
,
1
(
1
), pp.
7
45
.10.1023/A:1009909800311
9.
Coles
,
S.
,
2001
,
An Introduction to Statistical Modeling of Extreme Values
(Springer Series in Statistics),
Springer-Verlag
,
London, UK
.10.1007/978-1-4471-3675-0
10.
Waal
,
D.
, and
Gelder
,
P.
,
2005
, “
Modeling of Extreme Wave Heights and Periods Through Copulas
,”
Extremes
,
8
, pp.
345
356
.10.1007/s10687-006-0006-y
11.
Tawn
,
J. A.
,
1988
, “
Bivariate Extreme Value Theory: Models and Estimation
,”
Biometrika
,
75
(
3
), pp.
397
415
.10.1093/biomet/75.3.397
12.
Pickands
,
J.
,
1981
, “
Multivariate Extreme Value Distributions
,”
Proceedings of the 43rd Session of the International Statistical Institute
, Bulletin of the International Statistical Institute, Vol.
49
, pp.
859
878
.
13.
Balakrishnan
,
N.
, and
Lai
,
C.-D.
,
2009
,
Continuous Bivariate Distributions
,
Springer Science+Business Media
,
New York.
14.
Kaufmann
,
E.
, and
Reiss
,
R.-D.
,
1995
, “
Approximation Rates for Multivariate Exceedances
,”
J. Stat. Plann. Inference
,
45
(
12
), pp.
235
245
.10.1016/0378-3758(94)00074-3
15.
Naess
,
A.
,
2011
, “
A Note on the Bivariate ACER Method
,” Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Preprint Statistics No. 01/2011.
16.
Sklar
,
M.
,
1959
,
Fonctions de répartition à n dimensions et leurs marges
,
Publications of the Institute of Statistics of the University of Paris
,
Paris, France
, Vol.
8
, pp.
229
231
.
17.
Nelsen
,
R. B.
,
2006
,
An Introduction to Copulas
(Springer Series in Statistics),
Springer Science+Business Media
,
New York
.
18.
Gudendorf
,
G.
, and
Segers
,
J.
,
2010
, “
Extreme-Value Copulas
,”
Copula Theory and Its Applications
,
P.
Jaworski
,
F.
Durante
,
W.
Härdle
, and
T.
Rychlik
, eds.,
Springer-Verlag
,
Berlin, Germany
, Chap. 6.10.1007/978-3-642-12465-5_6
19.
Hougaard
,
P.
,
1986
, “
A Class of Multivariate Failure Time Distributions
,”
Biometrika
,
73
(
3
), pp.
671
678
.10.1093/biomet/73.3.671
20.
Tiago de Oliveira
,
J.
,
1984
, “
Bivariate Models for Extremes; Statistical Decision
,”
Statistical Extremes and Applications
,
Springer
,
New York
, pp.
131
153
.
21.
Yue
,
S.
,
Ouarda
,
T.
,
Bobée
,
B.
,
Legendre
,
P.
, and
Bruneau
,
P.
,
1999
, “
The Gumbel Mixed Model for Flood Frequency Analysis
,”
J. Hydrol.
,
226
(
1–2
), pp.
88
100
.10.1016/S0022-1694(99)00168-7
22.
Yue
,
S.
,
2000
, “
The Gumbel Mixed Model Applied to Storm Frequency Analysis
,”
Water Resour. Manage.
,
14
(
5
), pp.
377
389
.10.1023/A:1011124423923
23.
Yue
,
S.
,
2001
, “
The Gumbel Logistic Model for Representing a Multivariate Storm Event
,”
Adv. Water Resour.
,
24
(
2
), pp.
179
185
.10.1016/S0309-1708(00)00039-7
24.
Yue
,
S.
,
2001
, “
A Bivariate Extreme Value Distribution Applied to Flood Frequency Analysis
,”
Nord. Hydrol.
,
32
(
1
), pp.
49
64
.10.2166/nh.2001.004
25.
Yue
,
S.
, and
Wang
,
C. Y.
,
2004
, “
A Comparison of Two Bivariate Extreme Value Distributions
,”
Stochastic Environ. Res. Risk Assess.
,
18
(
2
), pp.
61
66
.10.1007/s00477-003-0124-x
26.
Tiago de Oliveira
,
J.
,
1982
, “
Bivariate Extremes: Models and Statistical Decision
,”
Center for Stochastic Processes
,
University of North Carolina
,
Chapel Hill, NC
, Technical Report No. 14.
27.
Karpa
,
O.
, and
Naess
,
A.
,
2013
, “
Extreme Value Statistics of Wind Speed Data by the ACER Method
,”
J. Wind Eng. Ind. Aerodyn.
,
112
, pp.
1
10
.10.1016/j.jweia.2012.10.001
28.
Naess
,
A.
, and
Gaidai
,
O.
,
2009
, “
Estimation of Extreme Values From Sampled Time Series
,”
Struct. Saf.
,
31
(
4
), pp.
325
334
.10.1016/j.strusafe.2008.06.021
29.
Karpa
,
O.
,
2012
, “
ACER User Guide
,” http://folk.ntnu.no/karpa/ACER/ACER_User_guide.pdf
30.
Naess
,
A.
,
1985
, “
The Joint Crossing Frequency of Stochastic Processes and Its Application to Wave Theory
,”
Appl. Ocean Res.
,
7
(
1
), pp.
35
50
.10.1016/0141-1187(85)90016-1
31.
Naess
,
A.
,
1990
, “
Approximate First-Passage and Extremes of Narrow-Band Gaussian and Non-Gaussian Random Vibrations
,”
J. Sound Vib.
,
138
(
3
), pp.
365
380
.10.1016/0022-460X(90)90592-N
32.
Watson
,
G. S.
,
1954
, “
Extreme Values in Samples From m-Dependent Stationary Stochastic Processes
,”
Ann. Math. Stat.
,
25
(
4
), pp.
798
800
.10.1214/aoms/1177728670
You do not currently have access to this content.