Specification of realistic environmental design conditions for marine structures is of fundamental importance to their reliability over time. Design conditions for extreme waves and storm severities are typically estimated by extreme value analysis of time series of measured or hindcast significant wave height, HS. This analysis is complicated by two effects. First, HS exhibits temporal dependence. Second, the characteristics of HSsp are nonstationary with respect to multiple covariates, particularly wave direction, and season. We develop directional–seasonal design values for storm peak significant wave height (HSsp) by estimation of, and simulation under a nonstationary extreme value model for HSsp. Design values for significant wave height (HS) are estimated by simulating storm trajectories of HS consistent with the simulated storm peak events. Design distributions for individual maximum wave height (Hmax) are estimated by marginalization using the known conditional distribution for Hmax given HS. Particular attention is paid to the assessment of model bias and quantification of model parameter and design value uncertainty using bootstrap resampling. We also outline existing work on extension to estimation of maximum crest elevation and total extreme water level.

References

1.
Scarrott
,
C.
, and
MacDonald
,
A.
,
2012
, “
A Review of Extreme Value Threshold Estimation and Uncertainty Quantification
,”
REVSTAT
,
10
(
1
), pp.
33
60
.
2.
Tancredi
,
A.
,
Anderson
,
C. W.
, and
O'Hagan
,
A.
,
2006
, “
Accounting for Threshold Uncertainty in Extreme Value Estimation
,”
Extremes
,
9
(
2
), pp.
87
106
.10.1007/s10687-006-0009-8
3.
Wadsworth
,
J. L.
, and
Tawn
,
J. A.
,
2012
, “
Likelihood-Based Procedures for Threshold Diagnostics and Uncertainty in Extreme Value Modelling
,”
J. R. Statist. Soc., Ser. B.
,
74
(
3
), pp.
543
567
.10.1111/j.1467-9868.2011.01017.x
4.
Thompson
,
P.
,
Cai
,
Y.
,
Reeve
,
D.
, and
Stander
,
J.
,
2009
, “
Automated Threshold Selection Methods for Extreme Wave Analysis
,”
Coastal Eng.
,
56
(
10
), pp.
1013
1021
.10.1016/j.coastaleng.2009.06.003
5.
Thompson
,
P.
,
Cai
,
Y.
,
Moyeed
,
R.
,
Reeve
,
D.
, and
Stander
,
J.
,
2010
, “
Bayesian Nonparametric Quantile Regression Using Splines
,”
Comput. Stat. Data Anal.
,
54
(
4
), pp.
1138
1150
.10.1016/j.csda.2009.09.004
6.
Muraleedharan
,
G.
,
Claudia
,
Lucas
,
Guedes Soares
,
C.
,
Unnikrishnan Nair
,
N.
, and
Kurup
,
P. G.
,
2012
, “
Modelling Significant Wave Height Distributions With Quantile Functions for Estimation of Extreme Wave Heights
,”
Ocean Eng.
,
54
, pp.
119
131
.10.1016/j.oceaneng.2012.07.007
7.
Cai
,
Y.
, and
Reeve
,
D. E.
,
2013
, “
Extreme Value Prediction Via a Quantile Function Model
,”
Coastal Eng.
,
77
, pp.
91
98
.10.1016/j.coastaleng.2013.02.003
8.
Scotto
,
M. G.
, and
Guedes-Soares
,
C.
,
2000
, “
Modeling the Long-Term Time Series of Significant Wave Height With Non-Linear Threshold Models
,”
Coastal Eng.
,
40
(
4
), pp. 313–327.10.1016/S0378-3839(00)00016-8
9.
Scotto
,
M. G.
, and
Guedes-Soares
,
C.
,
2007
, “
Bayesian Inference for Long-Term Prediction of Significant Wave Height
,”
Coastal Eng.
,
54
(
5
), pp. 393–400.10.1016/j.coastaleng.2006.11.003
10.
Chavez-Demoulin
,
V.
, and
Davison
,
A. C.
,
2012
, “
Modeling Time Series Extremes
,”
REVSTAT
,
10
(
1
), pp.
109
133
.
11.
Ferro
,
C. A. T.
, and
Segers
,
J.
,
2003
, “
Inference for Clusters of Extreme Values
,”
J. R. Statist. Soc., Ser. B
,
65
(
2
), pp.
545
556
.10.1111/1467-9868.00401
12.
Fawcett
,
L.
, and
Walshaw
,
D.
,
2007
, “
Improved Estimation for Temporally Clustered Extremes
,”
Environmetrics
,
18
(
2
), pp.
173
188
.10.1002/env.810
13.
Mendez
,
F. J.
,
Menendez
,
M.
,
Luceno
,
A.
, and
Losada
,
I. J.
,
2006
, “
Estimation of the Long-Term Variability of Extreme Significant Wave Height Using a Time-Dependent Pot Model
,”
J. Geophys. Res.
,
111
(
C7
), p.
C07024
.10.1029/2005JC003344
14.
Ruggiero
,
P.
,
Komar
,
P. D.
, and
Allan
,
J. C.
,
2010
, “
Increasing Wave Heights and Extreme Value Projections: The Wave Climate of the U.S. Pacific Northwest
,”
Coastal Eng.
,
57
(
5
), pp.
539
522
.10.1016/j.coastaleng.2009.12.005
15.
Calderon-Vega
,
F.
,
Vazquez-Hernandez
,
A. O.
, and
Garcia-Soto
,
A. D.
,
2013
, “
Analysis of Extreme Waves With Seasonal Variation in the Gulf of Mexico Using a Time-Dependent GEV Model
,”
Ocean Eng.
,
73
, pp.
68
82
.10.1016/j.oceaneng.2013.08.007
16.
Mendez
,
F. J.
,
Menendez
,
M.
,
Luceno
,
A.
,
Medina
,
R.
, and
Graham
,
N. E.
,
2008
, “
Seasonality and Duration in Extreme Value Distributions of Significant Wave Height
,”
Ocean Eng.
,
35
(
1
), pp.
131
138
.10.1016/j.oceaneng.2007.07.012
17.
Mackay
,
E. B. L.
,
Challenor
,
P. G.
, and
Bahaj
,
A. S.
,
2010
, “
On the Use of Discrete Seasonal and Directional Models for the Estimation of Extreme Wave Conditions
,”
Ocean Eng.
,
37
(
5–6
), pp.
425
442
.10.1016/j.oceaneng.2010.01.017
18.
Eastoe
,
E. F.
, and
Tawn
,
J. A.
,
2012
, “
Modeling Non-Stationary Extremes With Application to Surface Level Ozone
,”
J. R. Statist. Soc., Ser. C
,
58
(1), pp.
25
45
.
19.
Chavez-Demoulin
,
V.
, and
Davison
,
A. C.
,
2005
, “
Generalized Additive Modelling of Sample Extremes
,”
J. R. Statist. Soc., Ser. C
,
54
(
1
), p.
207
.10.1111/j.1467-9876.2005.00479.x
20.
Davison
,
A. C.
,
Padoan
,
S. A.
, and
Ribatet
,
M.
,
2012
, “
Statistical Modeling of Spatial Extremes
,”
Stat. Sci.
,
27
(
2
), pp.
161
186
.10.1214/11-STS376
21.
Jonathan
,
P.
, and
Ewans
,
K. C.
,
2013
, “
Statistical Modeling of Extreme Ocean Environments With Implications for Marine Design: A Review
,”
Ocean Eng.
,
62
, pp.
91
109
.10.1016/j.oceaneng.2013.01.004
22.
Jonathan
,
P.
, and
Ewans
,
K. C.
,
2007
, “
The Effect of Directionality on Extreme Wave Design Criteria
,”
Ocean Eng.
,
34
(
14
), pp.
1977
1994
.10.1016/j.oceaneng.2007.03.003
23.
Ewans
,
K. C.
, and
Jonathan
,
P.
,
2008
, “
The Effect of Directionality on Northern North Sea Extreme Wave Design Criteria
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041604
.10.1115/1.2960859
24.
Jonathan
,
P.
,
Ewans
,
K. C.
, and
Forristall
,
G. Z.
,
2008
, “
Statistical Estimation of Extreme Ocean Environments: The Requirement for Modelling Directionality and Other Covariate Effects
,”
Ocean Eng.
,
35
(
11
), pp.
1211
1225
.10.1016/j.oceaneng.2008.04.002
25.
Anderson
,
C. W.
,
Carter
,
D. J. T.
, and
Cotton
,
P. D.
,
2001
, “
Wave Climate Variability and Impact on Offshore Design Extremes
,” Report commissioned from the University of Sheffield and Satellite Observing Systems for Shell International.
26.
Randell
,
D.
,
Wu
,
Y.
,
Jonathan
,
P.
, and
Ewans
,
K. C.
,
2013
, “
Modelling Covariate Effects in Extremes of Storm Severity on the Australian North West Shelf
,”
ASME
Paper No. OMAE2013-10187.10.1115/OMAE2013-10187
27.
Jonathan
,
P.
,
Randell
,
D.
,
Wu
,
Y.
, and
Ewans
,
K.
,
2014
, “
Return Level Estimation From Non-Stationary Spatial Data Exhibiting Multidimensional Covariate Effects
,”
Ocean Eng.
,
88
, pp.
520
532
.10.1016/j.oceaneng.2014.07.007
28.
Tromans
,
P. S.
,
Anaturk
,
A.
, and
Hagemeijer
,
P.
,
1991
, “
A New Model for the Kinematics of Large Ocean Waves: Application as a Design Wave
,”
1st International Offshore and Polar Engineering Conference (ISOPE)
, pp. 64–71.
29.
Jonathan
,
P.
,
Taylor
,
P. H.
, and
Tromans
,
P. S.
,
1994
, “
Storm Waves in the Northern North Sea
,”
7th International Conference on the Behaviour of Offshore Structures
,
Cambridge, MA
, Vol.
2
, pp. 481–494.
30.
Forristall
,
G. Z.
,
1978
, “
On the Statistical Distribution of Wave Heights in a Storm
,”
J. Geophys. Res.
,
83
(
C5
), pp.
2353
2358
.10.1029/JC083iC05p02353
31.
Forristall
,
G. Z.
,
2000
, “
Wave Crest Distributions: Observations and Second-Order Theory
,”
J. Phys. Oceanogr.
,
30
(
8
), pp.
1931
1943
.10.1175/1520-0485(2000)030<1931:WCDOAS>2.0.CO;2
32.
Prevosto
,
M.
,
Krogstad
,
H. E.
, and
Robin
,
A.
,
2000
, “
Probability Distributions for Maximum Wave and Crest Heights
,”
Coastal Eng.
,
40
(
4
), pp.
329
360
.10.1016/S0378-3839(00)00017-X
33.
Reistad
,
M.
,
Breivik
,
O.
,
Haakenstad
,
H.
,
Aarnes
,
O. J.
,
Furevik
,
B. R.
, and
Bidlot
,
J.-R.
,
2011
, “
A High-Resolution Hindcast of Wind and Waves for the North Sea, the Norwegian Sea, and the Barents Sea
,”
J. Geophys. Res.
,
116
, pp.
1
18
.10.1029/2010JC006402
34.
Aarnes
,
O. J.
,
Breivik
,
O.
, and
Reistad
,
M.
,
2012
, “
Wave Extremes in the Northeast Atlantic
,”
J. Clim.
,
25
(
5
), pp.
1529
1543
.10.1175/JCLI-D-11-00132.1
35.
Breivik
,
O.
,
Aarnes
,
O. J.
,
Bidlot
,
J.-R.
,
Carrasco
,
A.
, and
Saetra
,
Ø.
,
2013
, “
Wave Extremes in the North East Atlantic From Ensemble Forecasts
,”
J. Clim.
,
26
(
19
), pp.
7525
7540
.10.1175/JCLI-D-12-00738.1
36.
Dixon
,
J. M.
,
Tawn
,
J. A.
, and
Vassie
,
J. M.
,
1998
, “
Spatial Modeling of Extreme Sea-Levels
,”
Environmetrics
,
9
(
3
), pp.
283
301
.10.1002/(SICI)1099-095X(199805/06)9:3<283::AID-ENV304>3.0.CO;2-#
37.
Eilers
,
P. H. C.
, and
Marx
,
B. D.
,
2010
, “
Splines, Knots and Penalties
,”
Wiley Intersci. Rev.
,
2
(
6
), pp.
637
653
.10.1002/wics.125
38.
ISO19901-1
,
2005
, “
Petroleum and Natural Gas Industries. Specific Requirements for Offshore Structures. Part 1: Metocean Design and Operating Considerations
,”
International Standards Organization
,
Geneva, Switzerland
.
39.
Tromans
,
P. S.
, and
Vanderschuren
,
L.
,
1995
, “
Response Based Design Conditions in the North Sea: Application of a New Method
,”
Offshore Technology Conference
,
Houston, TX
, (OTC-7683).
40.
Forristall
,
G. Z.
,
2004
, “
On the Use of Directional Wave Criteria
,”
J. Waterw. Port Coastal Ocean Eng.
,
130
(
5
), pp.
272
275
.10.1061/(ASCE)0733-950X(2004)130:5(272)
41.
API
,
2005
,
API Recommended Practice 2A-WSD (RP 2A-WSD), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms: Working Stress Design, API
, Washington, DC.
You do not currently have access to this content.