The shutdown of wind turbines may induce excessive loads on the structures and is an important factor to consider in their design. For pitch-regulated turbines, shutdown calls for blade pitching, and one- or two-blade shutdown may occur during pitch actuator failure. Through coupled analysis, this study investigated the dynamic responses of land-based and spar-type floating wind turbines (FWTs) during shutdown. We simulated the shutdown procedures by pitching one, two, or three blades, and by varying the pitch rate. The nonpitching blades have a fixed pitch angle during the process. Three generator torque conditions were considered: (1) grid loss, (2) mechanical braking, and (3) grid connection. The extreme response values and short-term and annual fatigue damages to the structural components were compared against these values under normal operation and parked conditions. Three-blade shutdown is recommended for both turbines. One- or two-blade shutdown with grid loss may result in a significant rotor overspeed and imbalanced loads acting on the rotor plane. Therefore, unfavorable structural responses are observed. Grid connection or mechanical braking alleviates the situation. The land-based turbine is more sensitive to the pitch rate when considering the tower bottom bending moment, but the blade moments and mooring line loads of the spar-type turbine are affected more.

References

References
1.
Germanischer Lloyd Industrial Services GmBH
,
2010
,
Guideline for the Certification of Wind Turbines
,
Hamberg
,
Germany
.
2.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
,
Chichester, West Sussex, UK
.10.1002/9781119992714
3.
Boston Herald
,
2012
, (Accessed Nov. 17, 2013), “
Reality sinks in for Wind Project
,” http://bostonherald.com/news_opinion/local_coverage/2012/02/reality_sinks_wind_project
4.
Anlas
,
S.
,
2005
(Accessed Nov. 17, 2013), “
Enercon E-82 Technical Description
,” Technical Report VI-Technical Description E-82-Rev002ger-eng, http://www.enercon.de/
5.
General Electric Company
,
2011
(Accessed Nov. 17, 2013), “
Commercial Documentaion Wind Turbine Generator Systems 2.5-2.75 Systems Technical Description and Data
,” Technical Report, http://www.gewindenergy.com
6.
Esbensen
,
T.
, and
Sloth
,
C.
,
2009
, “
Fault Diagnosis and Fault-Tolerant Control of Wind Turbines
,” Master thesis, Department of Electronic Systems, Aalborg University, Aalborg, Denmark.
7.
Siemens Energy
,
2012
(Accessed Nov. 17, 2013), “
Siemens 6.0 MW Offshore Wind Turbine
,” Technical Report, http://www.siemens.com/wind
8.
Vestas Wind Systems A/S
,
2012
, “
General Specification
,” Report No. V100-1.8 MW VCUS (unpublished).
9.
International Electrotechnical Commission
,
2007
,
IEC 61400-1 Wind Turbine Part 1: Design Requirements
,
3rd ed.
,
Geneva, Switzerland
.
10.
International Electrotechnical Commission
,
2009
,
IEC 61400-3 Wind Turbines Part3: Design Requirements for Offshore Wind Turbines
,
3rd ed.
,
Geneva, Switzerland
.
11.
Jonkman
,
J.
, and
Matha
,
D.
,
2011
, “
Dynamics of Offshore Floating Wind Turbines—Analysis of Three Concepts
,”
Wind Energy
,
14
(
4
), pp.
557
569
.10.1002/we.442
12.
Karimirad
,
M.
, and
Moan
,
T.
,
2011
, “
Extreme Dynamic Structural Response Analysis of Catenary Moored Spar Wind Turbine in Harsh Environmental Conditions
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
(
4
), p.
0411031
.10.1115/1.4003393
13.
Jiang
,
Z.
,
Karimirad
,
M.
, and
Moan
,
T.
,
2014
, “
Dynamic Response Analysis of Wind Turbines Under Blade Pitch System Fault, Grid Loss, and Shutdown Events
,”
Wind Energy
,
17
(
9
), pp.
1385
1409
.10.1002/we.1639
14.
Bachynski
,
E. E.
,
Etemaddar
,
M.
,
Kvittem
,
M. I.
,
Luan
,
C.
, and
Moan
,
T.
,
2013
, “
Dynamic Analysis of Floating Wind Turbines During Pitch Actuator Fault, Grid Loss, and Shutdown
,”
Energy Procedia
,
35
, pp.
210
222
.10.1016/j.egypro.2013.07.174
15.
Ormberg
,
H.
, and
Bachynski
,
E. E.
,
2012
, “
Global Analysis of Floating Wind Turbines: Code Development, Model Sensitivity and Benchmark Study
,”
Proceedings of the 22nd International Offshore and Polar Engineering Conference
,
Rhodes Island, Greece
, June 17–22, pp. 366–373.
16.
Gros
,
S.
, and
Chachuat
,
B.
,
2013
, “
Optimization-Based Load Reduction During Rapid Shutdown of Multi-Megawatt Wind Turbine Generators
,”
Wind Energy
,
17
(
7
), pp.
1055
1075
.10.1002/we.1618
17.
Jonkman
,
J.
,
2009
, “
Definition of a 5-MW Reference Wind Trubine for Offshore System Development
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-38060.
18.
Jonkman
,
J.
,
2010
, “
Definition of the Floating System for Phase IV of OC3
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-47535.
19.
Robertson
,
A.
,
Jonkman
,
J.
,
Musial
,
W.
,
Vorpahl
,
F.
, and
Popko
,
W.
,
2013
, “
Offshore Code Comparison Collaboration, Continuation: Phase II Results of a Floating Semisubmersible Wind System
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/CP-5000-60600.
20.
Robertson
,
A.
,
Jonkman
,
J.
,
Vorpahl
,
F.
,
Popko
,
W.
,
Qvist
,
J.
,
Frøyd
,
L.
,
Chen
,
X.
,
Azcona
,
J.
,
Uzungoglu
,
E.
,
Guedes Soares
,
C.
,
Luan
,
C.
,
Yutong
,
H.
,
Pengcheng
,
F.
,
Yde
,
A.
,
Larsen
,
T.
,
Nichols
,
J.
,
Buils
,
R.
,
Lei
,
L.
,
Nygard
,
T. A.
,
Manolas
,
D.
,
Heege
,
A.
,
Vatne
,
S. R.
,
Ormberg
,
H.
,
Duarte
,
T.
,
Godreau
,
C.
,
Hansen
,
F. H.
,
Nielsen
,
A. W.
,
Riber
,
H.
,
LeCunff
,
C.
,
Abele
,
R.
,
Beyer
,
F.
,
Yamaguchi
,
A.
,
JinJung
,
K.
,
Shin
,
H.
,
Shi
,
W.
,
Park
,
H.
,
Alves
,
M.
, and
Guerinel
,
M.
,
2014
, “
Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating SemisubmersibleWind System
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/CP-5000-61154.
21.
https://www.ieawind.org (Last Accessed Aug. 21)
22.
Det Norske Veritas
,
2013
,
SESAM User Manual HydroD—Program Version 4.6
,
Høvik
,
Norway
.
23.
Moriarty
,
P.
, and
Hansen
,
A.
,
2005
, “
Aerodyn Theory Manual
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-36881.
24.
Li
,
L.
,
Gao
,
Z.
, and
Moan
,
T.
,
2013
, “
Joint Environmental Data at Five European Offshore Sites for Design of Combined Wind and Wave Energy Concepts
,”
ASME
Paper No. OMAE2013-10156.10.1115/OMAE2013-10156
25.
Fleming
,
P.
,
2013
, personal communication.
26.
Jiang
,
Z.
,
Moan
,
T.
,
Gao
,
Z.
, and
Karimirad
,
M.
,
2013
, “
Effect of Shut-Down Procedures on Dynamic Responses of a Spar-Type Floating Wind Turbine
,”
ASME
Paper No. OMAE2013-10214.10.1115/OMAE2013-10214
27.
Frøyd
,
L.
,
2012
, “
Effect of Pitch and Safety System Design on Dimensioning Loads for Onshore Wind Turbines During Grid Fault
,”
Energy Procedia
,
24
, pp.
36
43
.10.1016/j.egypro.2012.06.084
28.
Det Norske Veritas
,
2010
,
Fatigue Design of Offshore Steel Structures
, Technical Report No. DNV-RP-C203,
Høvik
,
Norway
.
29.
Det Norske Veritas
,
2010
,
Position Mooring
, Technical Report No. DNV-OS-E301,
Høvik
,
Norway
.
30.
Gao
,
Z.
, and
Moan
,
T.
,
2008
, “
Frequency-Domain Fatigue Analysis of Wide-Band Stationary Gaussian Processes Using a Trimodal Spectral Formulation
,”
Int. J. Fatigue
,
30
(
10
), pp.
1944
1955
.10.1016/j.ijfatigue.2008.01.008
31.
Tavner
,
P.
,
2012
,
Offshore Wind Turbines: Reliability, Availability and Maintenance
,
The Institution of Engineering and Technology
,
London, UK
.10.1049/PBRN013E
You do not currently have access to this content.