In this paper, we presented an integrated numerical model for the wave-induced residual liquefaction around a buried offshore pipeline. In the present model, unlike previous investigations, two new features were added in the present model: (i) new definition of the source term for the residual pore pressure generations was proposed and extended from 1D to 2D; (ii) preconsolidation due to self-weight of the pipeline was considered. The present model was validated by comparing with the previous experimental data for the cases without a pipeline and with a buried pipeline. Based on the numerical model, first, we examined the effects of seabed, wave and pipeline characteristics on the pore pressure accumulations and residual liquefaction. The numerical results indicated a pipe with a deeper buried depth within the seabed with larger consolidation coefficient and relative density can reduce the risk of liquefaction around a pipeline. Second, we investigated the effects of a trench layer on the wave-induced seabed response. It is found that the geometry of the trench layer (thickness and width), as well as the backfill materials (permeability K and relative density Dr) have significant effect on the development of liquefaction zone around the buried pipeline. Furthermore, under certain conditions, partially backfill the trench layer up to one pipeline diameter is sufficient to protect the pipelines from the wave-induced liquefaction.

References

References
1.
Seed
,
H. B.
, and
Rahman
,
M. S.
,
1978
, “
Wave-Induced Pore Pressure in Relation to Ocean Floor Stability of Cohesionless Soils
,”
Mar. Geotechnol.
,
3
(
2
), pp.
123
150
.10.1080/10641197809379798
2.
Madsen
,
O. S.
,
1978
, “
Wave-Induced Pore Pressures and Effective Stresses in a Porous Bed
,”
Géotechnique
,
28
(
4
), pp.
377
393
.10.1680/geot.1978.28.4.377
3.
Hsu
,
J. R. C.
, and
Jeng
,
D.-S.
,
1994
, “
Wave-Induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness
,”
Int. J. Numer. Anal. Methods Geomech.
,
18
(
11
), pp.
785
807
.10.1002/nag.1610181104
4.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2002
,
The Mechanism of Scour in the Marine Environment
,
World Scientific
,
Hackensack, NJ
.
5.
Jeng
,
D.-S.
,
Seymour
,
B. R.
, and
Li
,
J.
,
2007
, “
A New Approximation for Pore Pressure Accumulation in Marine Sediment Due to Water Wave
,”
Int. J. Numer. Anal. Methods Geomech.
,
31
(
1
), pp.
53
69
.10.1002/nag.547
6.
Jeng
,
D.-S.
,
2013
,
Porous Models for Wave-Seabed Interactions
,
Springer
, Heidelberg, Germany.
7.
Zen
,
K.
, and
Yamazaki
,
H.
,
1990
, “
Mechanism of Wave-Induced Liquefaction and Densification in Seabed
,”
Soils Found.
,
30
(
4
), pp.
90
104
.10.3208/sandf1972.30.4_90
8.
Cheng
,
A. H. D.
, and
Liu
,
P. L.-F.
,
1986
, “
Seepage Force on a Pipeline Buried in a Poroelastic Seabed Under Wave Loading
,”
Appl. Ocean Res.
,
8
(
1
), pp.
22
32
.10.1016/S0141-1187(86)80027-X
9.
Dunn
,
S.
,
Vun
,
P.
,
Chan
,
A.
, and
Damgaard
,
J.
,
2006
, “
Numerical Modeling of Wave-Induced Liquefaction Around Pipelines
,”
J. Waterw., Port, Coastal Ocean Eng.
,
132
, pp.
276
288
.10.1061/(ASCE)0733-950X(2006)132:4(276)
10.
Sumer
,
B. M.
,
Fredsøe
,
J.
,
Christensen
,
S.
, and
Lind
,
M. T.
,
1999
, “
Sinking/Floatation of Pipelines and Other Objects in Liquefied Soil Under Waves
,”
Coastal Eng.
,
38
, pp.
53
90
.10.1016/S0378-3839(99)00024-1
11.
Gao
,
F. P.
,
Gu
,
X. Y.
, and
Jeng
,
D.-S.
,
2003
, “
Physical Modeling of Untrenched Submarine Pipeline Instability
,”
Ocean Eng.
,
30
(
10
), pp.
1283
1304
.10.1016/S0029-8018(02)00108-7
12.
Pan
,
D.
,
Wang
,
L.
,
Pan
,
C.
, and
Hu
,
J.
,
2007
, “
Experimental Investigation on the Wave-Induced Pore Pressure Around Shallowly Embedded Pipelines
,”
Acta Oceanol. Sin.
,
26
, pp.
125
135
.
13.
Ulker
,
M. B. C.
,
Rahman
,
M. S.
, and
Guddati
,
M. N.
,
2012
, “
Breaking Wave-Induced Response and Instability of Seabed Around Caisson Breakwater
,”
Int. J. Numer. Anal. Methods Geomech.
,
36
, pp.
362
390
.10.1002/nag.1073
14.
Jeng
,
D.-S.
, and
Ye
,
J.
,
2012
, “
Three-Dimensional Consolidation of a Porous Unsaturated Seabed Under Rubble Mound Breakwater
,”
Ocean Eng.
,
53
, pp.
48
59
.10.1016/j.oceaneng.2012.06.004
15.
Jeng
,
D.-S.
,
Ye
,
J.-H.
,
Zhang
,
J.-S.
, and
Liu
,
P. L. F.
,
2013
, “
An Integrated Model for the Wave-Induced Seabed Response Around Marine Structures: Model Verifications and Applications
,”
Coastal Eng.
,
72
, pp.
1
19
.10.1016/j.coastaleng.2012.08.006
16.
Gao
,
F.-P.
, and
Wu
,
Y.-X.
,
2006
, “
Non-Linear Wave Induced Transient Response of Soil Around A Trenched Pipeline
,”
Ocean Eng.
,
33
, pp.
311
330
.10.1016/j.oceaneng.2005.05.008
17.
Lin
,
P.
, and
Liu
,
P. L.-F.
,
1999
, “
Internal Wave-Maker for Navier–Stokes Equations Models
,”
ASCE J. Waterw., Port, Coastal, Ocean Eng.
,
125
(
4
), pp.
207
415
.10.1061/(ASCE)0733-950X(1999)125:4(207)
18.
Liu
,
P. L.-F.
,
Lin
,
P.
,
Chang
,
K. A.
, and
Sakakiyama
,
T.
,
1999
, “
Numerical Modeling of Wave Interaction With Porous Structures
,”
ASCE J. Waterw., Port, Coastal Ocean Eng.
,
125
(
6
), pp.
322
330
.10.1061/(ASCE)0733-950X(1999)125:6(322)
19.
Lara
,
J. L.
,
Garcia
,
N.
, and
Losada
,
I. J.
,
2006
, “
RANS Modeling Applied to Random Wave Interaction With Submerged Permeable Structures
,”
Coastal Eng.
,
53
, pp.
395
417
.10.1016/j.coastaleng.2005.11.003
20.
Rodi
,
W.
,
2000
,
Turbulence Models and Their Application in Hydraulics-State-of-the-Art Review
,
A. A. Balkema
,
Rotterdam, The Netherlands
.
21.
Biot
,
M. A.
,
1941
.,“
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
26
(
2
), pp.
155
164
.10.1063/1.1712886
22.
Jeng
,
D.-S.
, and
Ye
,
J.
,
2012
, “
Response of Seabed to Natural Loading-Waves and Currents
,”
ASCE J. Eng. Mech.
,
138
(
6
), pp.
601
613
.10.1061/(ASCE)EM.1943-7889.0000356
23.
Jeng
,
D.-S.
, and
Seymour
,
B. R.
,
1997
, “
Response in Seabed of Finite Depth With Variable Permeability
,”
ASCE J. Geotech. Geoenviron. Eng.
,
123
(
10
), pp.
902
911
.10.1061/(ASCE)1090-0241(1997)123:10(902)
24.
Ulker
,
M. B. C.
,
Rahman
,
M. S.
, and
Jeng
,
D.-S.
,
2009
, “
Wave-Induced Response of Seabed: Various Formulations and Their Applicability
,”
Appl. Ocean Res.
,
31
(
1
), pp.
12
24
.10.1016/j.apor.2009.03.003
25.
Sumer
,
B. M.
,
Kirca
,
V. S. O.
, and
Fredsøe
,
J.
,
2012
, “
Experimental Validation of a Mathematical Model for Seabed Liquefaction Under Waves
,”
Int. J. Offshore Polar Eng.
,
22
, pp.
133
141
.
26.
de Alba
,
P.
,
Seed
,
H. B.
, and
Chan
,
C. K.
,
1976
, “
Sand Liquefaction in Large-Scale Simple Shear Tests
,”
ASCE J. Geotech. Div.
,
102
, pp.
909
928
.
27.
Liu
,
B.
, and
Jeng
,
D.-S.
,
2013
, “
Laboratory Study for Pore Pressure in Sandy Bed Under Wave Loading
,”
23rd International Offshore and Polar Engineering Conference, (ISOPE2013)
, Anchorage, AK, June 30–July 5, pp.
1432
1437
.
28.
Turcotte
,
B. R.
,
Liu
,
P. L.-F.
, and
Kulhawy
,
F. H.
,
1984
, “
Laboratory Evaluation of Wave Tank Parameters for Wave-Sediment Interaction
,” Joseph F. Defree Hydraulic Laboratory, School of Civil and Environmental Engineering, Cornell University, Technical Report No. 84–1.
29.
Sumer
,
B. M.
,
Truelsen
,
C.
, and
Fredsøe
,
J.
,
2006
, “
Liquefaction Around Pipelines Under Waves
,”
J. Waterw., Port, Coastal Ocean Eng.
,
132
, pp.
266
275
.10.1061/(ASCE)0733-950X(2006)132:4(266)
30.
Sassa
,
S.
,
Sekiguchi
,
H.
, and
Miyamamot
,
J.
,
2001
, “
Analysis of Progressive Liquefaction as Moving-Boundary Problem
,”
Géotechnique
,
51
(
10
), pp.
847
857
.10.1680/geot.2001.51.10.847
You do not currently have access to this content.