This paper evaluates the theoretical application of nonlinear model predictive control (NMPC) to a model-scale point absorber for wave energy conversion. The NMPC strategy will be evaluated against a passive system, which utilizes no controller, using a performance metric based on the absorbed energy. The NMPC strategy was setup as a nonlinear optimization problem utilizing the interior point optimizer (IPOPT) package to obtain a time-varying optimal generator damping from the power-take-off (PTO) unit. This formulation is different from previous investigations in model predictive control, as the current methodology only allows the PTO unit to behave as a generator, thereby unable to return energy to the waves. Each strategy was simulated in the time domain for regular and irregular waves, the latter taken from a modified Pierson–Moskowitz spectrum. In regular waves, the performance advantages over a passive system appear at frequencies near resonance while at the lower and higher frequencies they become nearly equivalent. For irregular waves, the NMPC strategy leads to greater energy absorption than the passive system, though strongly dependent on the prediction horizon. It was found that the ideal NMPC strategy required a generator that could be turned on and off instantaneously, leading to sequences where the generator can be inactive for up to 50% of the wave period.

References

References
1.
Falnes
,
J.
, and
Lovseth
,
J.
,
1991
, “
Ocean Wave Energy
,”
Energy Policy
,
19
(
8
), pp.
768
775
.10.1016/0301-4215(91)90046-Q
2.
Yeung
,
R. W.
,
Peffier
,
A.
,
Tom
,
N.
, and
Matlak
,
T. J.
,
2010
, “
Design, Analysis, and Evaluation of the UC-Berkeley Wave-Energy Extractor
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(2), p.
021902
.10.1115/1.4004518
3.
Tom
,
N.
, and
Yeung
,
R. W.
,
2013
, “
Performance Enhancements and Validations of a Generic Ocean-Wave Energy Extractor
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(4), p.
041101
.10.1115/1.4024150
4.
Budal
,
K.
, and
Falnes
,
J.
,
1975
, “
A Resonant Point Absorber of Ocean-Wave Power
,”
Nature
,
256
, pp.
478
479
.10.1038/256478a0
5.
Rhinefrank
,
K.
,
Schacher
,
A.
,
Prudell
,
J.
,
Stillinger
,
C.
,
Naviaux
,
D.
,
Brekken
,
T.
,
von Jouanne
,
A.
,
Newborn
,
D.
,
Yim
,
S.
, and
Cox
,
D.
,
2010
, “
High Resolution Wave Tank Testing of Scaled Wave Energy Devices
,”
Proceedings of the 29th ASME International Conference on Ocean, Offshore, and Arctic Engineering (OMAE-10)
, Shanghai, China, June 6–11, pp.
505
509
.
6.
Grilli
,
A.
,
Merrill
,
J.
,
Grilli
,
S.
,
Spaulding
,
M.
, and
Cheung
,
J.
,
2007
, “
Experimental and Numerical Study of Spar Buoy-Magnet/Spring Oscillators Used as Wave Energy Absorbers
,”
Proceedings of the 17th International Society of Offshore and Polar Engineers (ISOPE-07)
, Lisbon, Portugal, July 1–6, pp.
489
496
.
7.
Elwood
,
D.
,
Yim
,
S.
,
Prudell
,
J.
,
Stillinger
,
C.
,
von Jouanne
,
A.
,
Brekken
,
T.
,
Brown
,
A.
, and
Paasch
,
R.
,
2010
, “
Design, Construction, and Ocean Testing of a Taut-Moored Dual-Body Wave Energy Converter With Linear Generator Power Take-Off
,”
Renewable Energy
,
35
(
2
), pp.
348
354
.10.1016/j.renene.2009.04.028
8.
Oprea
,
C.
,
Martis
,
C.
,
Biro
,
K.
, and
Jurca
,
F.
,
2010
, “
Design and Testing of a Four-Sided Permanent Magnet Linear Generator Prototype
,”
Proceedings of the 19th International Conference on Electrical Machines (ICEM-10)
, Rome, Italy, Sept. 6–8, pp. 1–6.
9.
Leijon
,
M.
,
Bernhoff
,
H.
,
Agren
,
O.
,
Isberg
,
J.
,
Berg
,
M.
,
Karlsson
,
K. E.
, and
Wolfbrandt
,
A.
,
2005
, “
Multiphysics Simulation of Wave Energy to Electric Energy Conversion by Permanent Magnet Linear Generator
,”
IEEE Trans. Energy Convers.
,
20
(
1
), pp.
219
224
.10.1109/TEC.2004.827709
10.
Stalberg
,
M.
,
Waters
,
R.
,
Danielsson
,
O.
, and
Lejion
,
M.
,
2008
, “
Influence of Generator Damping on Peak Power and Variance of Power for a Direct Drive Wave Energy Converter
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
3
), p.
031003
.10.1115/1.2905032
11.
Falcão
,
A.
,
2007
, “
Modelling and Control of Oscillating-Body Wave Energy Converters With Hydraulic Power Take-Off and Gas Accumulator
,”
Ocean Eng.
,
34
(
14–15
), pp.
2021
2032
.10.1016/j.oceaneng.2007.02.006
12.
Falnes
,
J.
,
2002
, “
Optimum Control of Oscillation of Wave-Energy Converters
,”
Intl. J. Offshore Polar Eng.
,
12
(
2
), pp.
147
155
.
13.
Bjarte-Larsson
,
T.
, and
Falnes
,
J.
,
2006
, “
Laboratory Experiment on Heaving Body With Hydraulic Power Take-Off and Latching Control
,”
Ocean Eng.
,
33
(
7
), pp.
447
477
.10.1016/j.oceaneng.2005.07.007
14.
de Falcão
,
A. F.
,
2008
, “
Phase Control Through Load Control of Oscillating-Body Wave Energy Converters With Hydraulic PTO System
,”
Ocean Eng.
,
35
(
3–4
), pp.
358
366
.10.1016/j.oceaneng.2007.10.005
15.
Henriques
,
J. C.
,
de Falcão
,
A. F.
,
Gomes
,
R. P.
, and
Gato
,
L. M.
,
2012
, “
Latching Control of an OWC Spar-Buoy Wave Energy Converter in Regular Waves
,”
Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering (OMAE-12)
, Rio de Janeiro, Brazil, July 1–6, pp.
641
650
.
16.
Valerio
,
D.
,
Beirão
,
P.
, and
da Costa
,
J. S.
,
2007
, “
Optimisation of Wave Energy Extraction With the Archimedes Wave Swing
,”
Ocean Eng.
,
34
, pp.
2330
2344
.10.1016/j.oceaneng.2007.05.009
17.
Yavuz
,
H.
,
Stallard
,
T. J.
,
McCabe
,
A. P.
, and
Aggidis
,
G. A.
,
2007
, “
Time Series Analysis-Based Adaptive Tuning Techniques for a Heaving Wave Energy Converter in Irregular Seas
,”
J. Power Energy
,
221
(
1
), pp.
77
90
.10.1243/09576509JPE291
18.
Babarit
,
A.
, and
Clement
,
A. H.
,
2006
, “
Optimal Latching Control of a Wave Energy Device in Regular and Irregular Waves
,”
Appl. Ocean Res.
,
28
, pp.
77
91
.10.1016/j.apor.2006.05.002
19.
Clement
,
A. H.
, and
Babarit
,
A.
,
2012
, “
Discrete Control of Resonant Wave Energy Devices
,”
Phil. Trans. R. Soc. A
,
370
, pp.
288
314
.10.1098/rsta.2011.0132
20.
Hals
,
J.
,
Falnes
,
J.
, and
Moan
,
T.
,
2011
, “
A Comparison of Selected Strategies for Adaptive Control of Wave Energy Converters
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
, p.
031101
.10.1115/1.4002735
21.
Eidsmoen
,
H.
,
1998
, “
Tight-Moored Amplitude-Limited Heaving-Buoy Wave-Energy Converter With Phase Control
,”
Appl. Ocean Res.
,
20
(
3
), pp.
157
161
.10.1016/S0141-1187(98)00013-3
22.
Falnes
,
J.
,
2002
,
Ocean Waves and Oscillating Systems
,
Cambridge University
,
New York
.
23.
Rossiter
,
J. A.
,
2003
,
Model-Based Predictive Control: A Practical Approach
,
CRC Press
,
New York
.
24.
Brekken
,
T. K. A.
,
2011
, “
On Model Predictive Control for a Point Absorber Wave Energy Converter
,”
Proceedings of the 2011 Trondheim PowerTech Conference
, Trondheim, Norway, June 19–23, pp.
1
8
.
25.
Hals
,
J.
,
Falnes
,
J.
, and
Moan
,
T.
,
2011
, “
Constrained Optimal Control of a Heaving Buoy Wave-Energy Converter
,”
ASME J. Offshore Mech. Arct. Eng.
,
133
, p.
011401
.10.1115/1.4001431
26.
Cretel
,
J. A. M.
,
Lightbody
,
G.
, and
Thomas
,
G. P.
,
2010
, “
An Application of Model Predictive Control to a Wave Energy Point Absorber
,”
Proceedings of the IFAC Conference on Control Methodologies and Technology for Energy Efficiency
, Vilamoura, Portugal, Mar. 29–31, pp.
1
8
.
27.
Cretel
,
J. A. M.
,
Lightbody
,
G.
,
Thomas
,
G. P.
, and
Lewis
,
A. W.
,
2011
, “
Maximisation of Energy Capture by a Wave-Energy Point Absorber Using Model Predictive Control
,”
Proceedings of the 18th IFAC World Congress
, Milano, Italy, Aug. 28–Sept. 2, pp.
3714
3721
.
28.
Richter
,
R.
,
Magana
,
M.
,
Sawodny
,
O.
, and
Brekken
,
T.
,
2013
, “
Nonlinear Model Predictive Control of a Point Absorber Wave Energy Converter
,”
IEEE Trans. Sustainable Energy
,
4
(
1
), pp.
118
126
.10.1109/TSTE.2012.2202929
29.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
,
Springer
,
New York
.
30.
Cummins
,
W. E.
,
1962
, “The Impulse Response Function and Ship Motions,”
Schiffstechnik
,
9
, pp.
101
109
.
31.
Yeung
,
R. W.
,
1981
, “
Added Mass and Damping of a Vertical Cylinder in Finite-Depth Waters
,”
Appl. Ocean Res.
,
3
(
3
), pp.
119
133
.10.1016/0141-1187(81)90101-2
32.
Kung
,
S. Y.
,
1978
, “
A New Identification and Model Reduction Algorithm via Singular Value Decompositions
,”
Proceedings of the 12th IEEE Asilomar Conference on Circuits
, Systems and Computers, Pacific Grove, CA, Nov., pp.
705
714
.
33.
Kristiansen
,
E.
,
Hijulstad
,
A.
, and
Egeland
,
O.
,
2005
, “
State-Space Representation of Radiation Forces in Time-Domain Vessel Models
,”
Ocean Eng.
,
32
(
17–18
), pp.
2195
2216
.10.1016/j.oceaneng.2005.02.009
34.
Taghipour
,
R.
,
Perez
,
T.
, and
Moan
,
T.
,
2008
, “
Hybrid Frequency-Time Domain Models for Dynamic Response Analysis of Marine Structures
,”
Ocean Eng.
,
35
(
7
), pp.
685
705
.10.1016/j.oceaneng.2007.11.002
35.
Yu
,
Z.
, and
Falnes
,
J.
,
1996
, “
State-Space Modelling of a Vertical Cylinder in Heave
,”
Appl. Ocean Res.
,
17
(
5
), pp.
265
275
.10.1016/0141-1187(96)00002-8
36.
Wchter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.10.1007/s10107-004-0559-y
37.
HSL
,
2011
, “
A Collection of Fortran Codes for Large Scale Scientific Computation
,” http://www.hsl.rl.ac.uk
38.
Kelman
,
A.
,
Vichik
,
S.
, and
Borrelli
,
F.
,
2012
, “
BLOM: The Berkeley Library for Optimization Modeling and Nonlinear Model Predictive Control
,” http://www.mpclab.net/Trac/
39.
Wehausen
,
J. V.
, and
Laitone
,
E. V.
,
1960
, “
Surface Waves
,”
Encycl. Phys.
,
IX
, pp.
446
778
, Available online at http://coe.berkeley.edu/SurfaceWaves/
40.
Faltinsen
,
O. M.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University
,
Cambridge, NY
.
You do not currently have access to this content.