In the Marine Renewable Energy Laboratory of the University of Michigan, selectively located surface roughness has been designed successfully to suppress vortex-induced vibrations (VIV) of a single cylinder by 60% compared to a smooth cylinder. In this paper, suppression of flow-induced motions of two cylinders in tandem using surface roughness is studied experimentally by varying flow velocity and cylinder center-to-center spacing. Two identical rigid cylinders suspended by springs with their axes perpendicular to the flow are allowed one degree of freedom motion transverse to the flow direction. Surface roughness is applied in the form of four roughness strips helically placed around the cylinder. Results are compared to smooth cylinders also tested in this work. Amplitude ratio A/D, frequency ratio fosc/fn,water, and range of synchronization are measured. Regardless of the center-to-center cylinder distance, the amplitude response of the upstream smooth cylinder is similar to that of an isolated smooth cylinder. The wake from the upstream cylinder with roughness is narrower and longer and has significant influence on the amplitude of the downstream cylinder. The latter is reduced in the initial and upper branches while its range of VIV-synchronization is extended. Galloping is suppressed in both cylinders. In addition, the amplitude of the upstream rough cylinder and its range of synchronization increase with respect to the isolated rough cylinder.

References

References
1.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders Vol. 1: Fundamentals
,
Oxford University Press
,
Oxford, UK
.
2.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
, pp.
389
447
.10.1016/j.jfluidstructs.2004.02.005
3.
Williamson
,
C. H. K.
, and
Govardhan
,
G.
,
2004
, “
Vortex-Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
4.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
,
2nd ed.
,
Van Nostrand Reinhold
,
New York
.
5.
Park
,
H.
,
Bernitsas
,
M. M.
, and
Kumar
,
A. R.
,
2011
, “
Selective Roughness in the Boundary Layer to Suppress Flow-Induced Motions of Circular Cylinder at 30,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
134
(
4
), p.
041801
.10.1115/1.4006235
6.
Igarashi
,
T.
,
1981
, “
Characteristics of a Flow Around Two Circular Cylinders Arranged in Tandem (1st Report)
,”
Bull. JSME
,
24
, pp.
323
331
.10.1299/jsme1958.24.323
7.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
, pp.
849
899
.10.1016/j.jfluidstructs.2010.07.001
8.
Bearman
,
P. W.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
27
, pp.
648
658
.10.1016/j.jfluidstructs.2011.03.021
9.
Kim
,
E. S.
,
Bernitsas
,
M. M.
, and
Kumar
,
A. R.
,
2011
, “
Multi-Cylinder Flow Induced Motions: Enhancement by Passive Turbulence Control at 28,000 < Re < 120,000
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
2
), p.
021802
.10.1115/1.4007052
10.
Sumner
,
D.
,
Richards
,
M. D.
, and
Akosile
,
O. O.
,
2005
, “
Two Staggered Circular Cylinders of Equal Diameter in Cross-Flow
,”
J. Fluids Struct.
,
13
, pp.
309
338
.10.1016/j.jfluidstructs.2004.10.006
11.
Chen
,
S. S.
,
1987
,
Flow-Induced Vibration of Circular Cylindrical Structures
,
Hemisphere Publishing Co.
,
Washington, D.C
.
12.
Zdravkovich
,
M. M.
,
2003
,
Flow Around Circular Cylinders Vol. 2: Applications
,
Oxford University Press
,
Oxford, UK
.
13.
Bearman
,
P. W.
,
1984
, “
Vortex Shedding From Oscillating Bluff Bodies
,”
Annu. Rev. Fluid Mech.
,
16
, pp.
195
222
.10.1146/annurev.fl.16.010184.001211
14.
Bokaian
,
A.
, and
Geoola
,
F.
,
1984
, “
Proximity Induced Galloping of Two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
, pp.
417
449
.10.1017/S0022112084001932
15.
Bokaian
,
A.
, and
Geoola
,
F.
,
1984
, “
Wake Induced Galloping of Two Interfering Circular Cylinders
,”
J. Fluid Mech.
,
146
, pp.
383
415
.10.1017/S0022112084001920
16.
Brika
,
D.
, and
Laneville
,
A.
,
1999
, “
The Flow Interaction Between a Stationary Cylinder and a Downstream Flexible Cylinder
,”
J. Fluids Struct.
,
13
(
5
), pp.
579
606
.10.1006/jfls.1999.0220
17.
Assi
,
G. R. S.
,
Bearman
,
P. W.
, and
Kitnely
,
N.
,
2009
, “
Low Drag Solutions for Suppressing Vortex-Induced Vibration of Circular Cylinder
,”
J. Fluids Struct.
,
25
, pp.
666
675
.10.1016/j.jfluidstructs.2008.11.002
18.
Assi
,
G. R. S.
,
Bearman
,
P. W.
, and
Meneghini
,
J. R.
,
2010
, “
On the Wake-Induced Vibration of Tandem Circular Cylinders: the Vortex Interaction Excitation Mechanism
,”
J. Fluid Mech.
,
661
, pp.
365
401
.10.1017/S0022112010003095
19.
Assi
,
G. R. S.
,
Bearman
,
P. W.
,
Kitney
,
N.
, and
Tognarelli
,
M. A.
,
2010
, “
Suppression of Wake-Induced Vibration of Tandem Cylinders With Free-to-Rotate Control Plate
,”
J. Fluids Struct.
,
26
, pp.
1045
1057
.10.1016/j.jfluidstructs.2010.08.004
20.
Kim
,
S.
,
Alam
,
M. M.
,
Sakamoto
,
H.
, and
Zhou
,
Y.
,
2009
, “
Flow-Induced Vibration of Two Circular Cylinders in Tandem Arrangement. Part 2: Suppression of Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
97
, pp.
312
319
.10.1016/j.jweia.2009.07.003
21.
Chang
,
C. C.
,
Kumar
,
R. A.
, and
Bernitsas
,
M. M.
,
2011
, “
VIV and Galloping of Single Circular Cylinder With Surface Roughness at 3.0 × 104 ≤ hang C. C5
,”
Ocean Eng.
,
38
, pp.
1713
1732
.10.1016/j.oceaneng.2011.07.013
22.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M. H.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.10.1115/1.2957913
23.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M. H.
,
2009
, “
The VIVACE Converter: Model Tests at Reynolds Numbers Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), pp.
1
13
.10.1115/1.2979796
24.
Raghavan
,
K.
, and
Bernitsas
,
M. M.
,
2011
, “
Experimental Investigation of Reynolds Effect on Vortex Induced Vibration of Rigid Cylinder on Elastic Supports
,”
Ocean Eng.
,
38
(
5–6
), pp.
719
731
.10.1016/j.oceaneng.2010.09.003
25.
Park
,
H. R.
,
Bernitsas
,
M. M.
, and
Chang
,
C. C.
,
2013
, “
Robustness of the Map of Passive Turbulence Control to Flow-Induced Motions for a Circular Cylinder at 30,000 < Re < 120,000
,”
Proceedings of the 31st OMAE Conference
, Nantes, France, June 9–14, Paper No. 10123.
26.
Ding
,
L.
,
Chen
,
Y.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2013
, “
2-D URans Versus Experiments of Flow Induced Motions of Multiple Circular Cylinders With Passive Turbulence Control
,”
Proceedings of the 31st OMAE
, Nantes, France, June 9–14, Paper No. 10911.
27.
Walker
,
D. T.
,
Lyzenga
,
D. R.
,
Ericson
,
E. A.
, and
Lund
,
D. E.
,
1996
, “
Radar Backscatter and Surface Roughness Measurements for Stationary Breaking Waves
,”
Proc. R. Soc. Lond. A
,
452
(
1952
), pp.
1953
1984
.10.1098/rspa.1996.0104
28.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2008
, “
Reduction/Suppression of VIV of Circular Cylinders Through Roughness Distribution at 8 × 103 < Re < 1.5×105
,”
ASME
Proceedings of the 27th Intl' Conference on Offshore Mechanics and Arctic Engineering
, Estoril, Portugal, June 15–20, pp.
1001
1005
.10.1115/OMAE2008-58024
29.
Bernitsas
,
M. M.
, and
Raghavan
,
K.
,
2011
, “
Enhancement of Vortex Induced Forces & Motion Through Surface Roughness Control
,” United States Patent and Trademark Office, Patent No. 8,042,232.
30.
Vickery
,
B. J.
, and
Watkins
,
R. D.
,
1964
, “
Flow Induced Vibrations of Cylindrical Structures
,”
Proceedings of the 1st Australian Conference on Hydraulics and Fluid Mechanics
, Crawley, Australia, pp.
213
241
.
31.
Benett
,
B.
,
Schatz
,
M. F.
,
Rockwood
,
H.
, and
Wisenfeld
,
K.
,
2002
, “
Recent Study of a Version of Huygens Apparatus Using Pendulum Clocks Mounted on a Heavy, Wheeled Cart. Huygens' Clocks
,”
Proc. R. Soc. Lond. A
,
458
(2019), pp.
563
579
.10.1098/rspa.2001.0888
You do not currently have access to this content.