The major processes that occur when level ice interacts with sloping structures (especially wide structures) are the fracturing of ice and upcoming ice fragments accumulating around the structure. The cohesive zone method, which can simulate both fracture initiation and propagation, is a potential numerical method to simulate this process. In this paper, as one of the numerical methods based on the cohesive zone theory, the cohesive-element–based approach was used to simulate both the fracturing and upcoming fragmentation of level ice. However, simulating ice and sloping structure interactions with the cohesive element method poses several challenges. One often-highlighted challenge is its convergence issue. Numerous attempts by different researchers have been invested in this issue either to prove or improve its convergence. However, these researchers work in different fields (e.g., fracture of concrete, ceramic, or glass fiber) with different scales (e.g., from a ceramic ring to a concrete block). As an attempt to study the cohesive element method's application in the current ice-structure interaction context (i.e., an engineering scale up to hundreds of meters), the mesh dependency of the cohesive element method was alleviated by both creating a mesh with a crossed triangle pattern and utilizing a penalty method to obtain the initial stiffness for the intrinsic cohesive elements. Furthermore, two potential methods (i.e., introduction of a random ice field and bulk energy dissipation considerations) to alleviate the mesh dependency problem were evaluated and discussed. Based on a series of simulations with the different aforementioned methods and mesh sizes, the global ice load history is obtained. The horizontal load information is validated against the test results and previous simulation results. According to the comparison, the mesh objectivity alleviation with different approaches was discussed. As a preliminary demonstration, the results of one simulation are summarized, and the load contributions from different ice-structure interaction phases are illustrated and discussed.

References

1.
Kotras, T. V., Baird, A. V., and Naegle, J. N.,
1983
, “
Predicting Ship Performance in Level Ice
,”
SNAME Trans
,
91
, pp.
329
349
.
2.
Valanto
,
P.
,
2001
, “On the Cause and Distribution of Resistance Forces on Ship Hulls Moving in Level Ice,” Proceedings of the 18th International Conference on Port and Ocean Engineering Under Arctic Conditions, Ottawa, Ontario, Canada, pp. 803–816.
3.
Valanto
,
P.
,
2006
, “On the Ice Load Distribution on Ship Hulls in Level Ice,” Technical Report No. ICETECH06-110-RF, ICETECH06.
4.
Kämäräinen
,
J.
,
2007
,
Theoretical Investigation on the Effect of Fluid Flow Between the Hull of a Ship and Ice Floes on Ice Resistance in Level Ice
,
Helsinki University of Technology
, Department of Mechanical Engineering, Laboratory for Mechanics of Materials, Helsinki, Finland.
5.
Naegle
,
J. N.
,
1980
, “
Ice-Resistance Prediction and Motion Simulation for Ships Operating in the Continuous Mode of Icebreaking
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
6.
Lu
,
W.
,
Serré
,
N.
,
Høyland
,
K. V.
, and
Evers
,
K.-U.
,
2013
, “Rubble Ice Transport on Arctic Offshore Structures (RITAS), Part IV Tactile Sensor Measurement of the Level Ice Load on Inclined Plate,” Proceedings of the 22nd International Conference on Port and Ocean Engineering Under Arctic Conditions, Espoo, Finland, pp. 1–14.
7.
Ruiz
,
G.
,
Ortiz
,
M.
, and
Pandolfi
,
A.
,
2000
, “
Three-Dimensional Finite-Element Simulation of the Dynamic Brazilian Tests on Concrete Cylinders
,”
Int. J. Num. Meth. Eng.
,
48
(
7
), pp.
963
994
.10.1002/(SICI)1097-0207(20000710)48:7<963::AID-NME908>3.0.CO;2-X
8.
Falk
,
M. L.
,
Needleman
,
A.
, and
Rice
,
J. R.
,
2001
, “
A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture
,”
J. Phys. IV France
, 11, pp.
5
8
.10.1051/jp4:2001506
9.
Molinari
,
J. F.
,
Gazonas
,
G.
,
Raghupathy
,
R.
,
Rusinek
,
A.
, and
Zhou
,
F.
,
2007
, “
The Cohesive Element Approach to Dynamic Fragmentation: The Question of Energy Convergence
,”
Int. J. Num. Meth. Eng.
,
69
(3), pp.
484
503
.10.1002/nme.1777
10.
Konuk
,
I.
,
Gürtner
,
A.
, and
Yu
,
S.
,
2009
, “
A Cohesive Element Framework for Dynamic Ice-Structure Interaction Problems—Part II: Implementation
,”
ASME
28th Intl. Conf. on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, May 31–June 5, Paper No. OMAE2009-80250, pp. 185–193.10.1115/OMAE2009-80250
11.
Konuk
,
I.
,
Gürtner
,
A.
, and
Yu
,
S.
,
2009
, “
A Cohesive Element Framework for Dynamic Ice-Structure Interaction Problems—Part I: Review and Formulation
,”
ASME
28th Intl. Conf. on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, May 31–June 5, Paper No. OMAE2009-79262, pp. 33–41.10.1115/OMAE2009-79262
12.
Konuk
,
I.
, and
Yu
,
S.
,
2010
, “
A Cohesive Element Framework for Dynamic Ice-Structure Interaction Problems—Part III: Case Studies
,”
ASME
29th Intl. Conf. on Ocean, Offshore and Arctic Engineering, Shanghai, China, June 6-11, Paper No. OMAE2010-20577, pp. 801–809.10.1115/OMAE2010-20577
13.
Gürtner
,
A.
,
Bjerkås
,
M.
,
Forsberg
,
J.
, and
Hilding
,
D.
,
2010
, “
Numerical Modeling of a Full Scale Ice Event
,” 20th IAHR Intl. Symposium on Ice, Lahti, Finland.
14.
Gürtner
,
A.
,
Konuk
,
I.
,
Gudmestad
,
O.
, and
Liferov
,
P.
,
2008
, “
Innovative Ice Protection for Shallow Water Drilling: Part III—Finite Element Modeling of Ice Rubble Accumulation
,”
ASME
27th Intl. Conf. on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, June 15–20, Paper No. OMAE2008-57915, pp. 981–987.10.1115/OMAE2008-57915
15.
Gürtner
,
A.
,
Konuk
, I
.
, and
Løset
,
S.
,
2008
, “
A Computational Cohesive Element Model for the Simulation of Ice Drift on Arrangements of Ice Protection Piles
,”
Computers Struct.
, pp.
131
141
(submitted).
16.
Kuutti
,
J.
,
Kolari
,
K.
, and
Marjavaara
,
P.
,
2013
, “
Simulation of Ice Crushing Experiments with Cohesive Surface Methodology
,”
Cold Region. Sci. Tech.
,
92
(
0
), pp.
17
28
.10.1016/j.coldregions.2013.03.008
17.
Hilding
,
D.
,
Forsberg
,
J.
, and
Gürtner
,
A.
,
2011
, “
Simulation of Ice Action Loads on Offshore Structures
,” 8th European LS-DYNA Users Conference,
Strasbourg
, France, pp.
1
12
. Available at: http://www.dynamore.se/en/resources/papers/konferenz11/papers/session17-paper5.pdf
18.
Lu
,
W.
,
Lubbad
,
R.
,
Løset
,
S.
, and
Høyland
,
K. V.
,
2012
, “
Cohesive Zone Method Based Simulations of Ice Wedge Bending: A Comparative Study of Element Erosion, CEM, DEM and XFEM
,”
The 21st IAHR International Symposium on Ice
, pp.
920
938
.
19.
Liu
,
M. L.
, and
Wu
,
J. F.
,
2012
, “
Numerical Simulation for Ice-Truss Offshore Structure Interactions With Cohesive Zone Model
,” IAHR 21st Intl. Symposium on Ice, Dalian University of Technology, Dalian, China, pp.
814
825
.
20.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P. E.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cement Concrete Res.
,
6
(
6
), pp.
773
781
.10.1016/0008-8846(76)90007-7
21.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1997
, Fracture and Size Effect in Concrete and Other Quasibrittle Materials (New Directions in Civil Engineering), CRC Press, Boca Raton, FL.
22.
Mulmule
,
S.
, and
Dempsey
,
J. P.
,
1998
, “
A Viscoelastic Fictitious Crack Model for the Fracture of Sea Ice
,”
Mechanics of Time-Dependent Materials
,
1
(
4
), pp.
331
356
.10.1023/A:1008063516422
23.
Mulmule
,
S.
, and
Dempsey
,
J.
,
1999
, “
Scale Effects on Sea Ice Fracture
,”
Mech. Cohesive Frict. Mat.
,
4
(
6
), pp.
505
524
.10.1002/(SICI)1099-1484(199911)4:6<505::AID-CFM67>3.0.CO;2-P
24.
Mulmule
,
S.
, and
Dempsey
,
J.
,
2000
, “
LEFM Size Requirements for the Fracture Testing of Sea Ice
,”
Int. J. Fracture
,
102
(
1
), pp.
85
98
.10.1023/A:1007603428907
25.
Dempsey
,
J.
,
Adamson
,
R.
, and
Mulmule
,
S.
,
1999
, “
Scale Effects on the in-Situ Tensile Strength and Fracture of Ice. Part II: First-Year Sea Ice at Resolute, NWT
,”
Int. J. Fracture
,
95
(
1
), pp.
347
366
.10.1023/A:1018650303385
26.
Duval
,
P.
, and
Schulson
,
E. M.
,
2009
, Creep and Fracture of Ice, Cambridge University Press, Cambridge, UK, pp. 190–211.
27.
Timco
,
G.
, and
Weeks
,
W.
,
2010
, “
A Review of the Engineering Properties of Sea Ice
,”
Cold Region. Sci. Tech.
,
60
(
2
), pp.
107
129
.10.1016/j.coldregions.2009.10.003
28.
Paavilainen
,
J.
, and
Tuhkuri
,
J.
,
2012
, “
Parameter Effects on Simulated Ice Rubbling Forces on a Wide Sloping Structure
,”
Cold Region. Sci. Tech.
,
81
, pp.
1
10
.10.1016/j.coldregions.2012.04.005
29.
Paavilainen
,
J.
,
Tuhkuri
,
J.
, and
Polojarvi
,
A.
,
2010
, “
Rubble Pile Formation Against an Inclined Structure Analysis of Simulation Results
,”
IAHR International Symposium on Ice
, pp.
1
11
.
30.
Paavilainen
,
J.
,
Tuhkuri
,
J.
, and
Polojärvi
,
A.
,
2009
, “
2D Combined Finite-Discrete Element Method to Model Multi-Fracture of Beam Structures
,”
Eng. Computat.
,
26
(
6
), pp.
578
598
.10.1108/02644400910975397
31.
Paavilainen
,
J.
,
Tuhkuri
,
J.
, and
Polojärvi
,
A.
,
2006
, “
Discrete Element Simulation of Ice Pile-up Against an Inclined Structure
,”
IAHR 18th International Symposium on Ice
, pp.
177
184
.
32.
Paavilainen
,
J.
,
Tuhkuri
,
J.
, and
Polojärvi
,
A.
,
2011
, “
2D Numerical Simulations of Ice Rubble Formation Process Against an Inclined Structure
,”
Cold Region. Sci. Tech.
,
68
(
1–2
), pp.
20
34
.10.1016/j.coldregions.2011.05.003
33.
Zi
,
G.
, and
Belytschko
,
T.
,
2003
, “
New Crack-Tip Elements for XFEM and Applications to Cohesive Cracks
,”
Int. J. Num. Meth. Eng.
,
57
(
15
), pp.
2221
2240
.10.1002/nme.849
34.
Remmers
,
J. J. C.
,
Borst
,
R. D.
, and
Needleman
,
A.
,
2003
, “
A Cohesive Segments Method for the Simulation of Crack Growth
,”
Computat. Math.
,
31
(
1–2
), pp.
69
77
.10.1007/s00466-002-0394-z
35.
Gürtner
,
A.
,
2009
, “
Experimental and Numerical Investigations of Ice-Structure Interaction
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway. p.
194
.
36.
Xu
,
X. P.
, and
Needleman
,
A.
,
1994
, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.10.1016/0022-5096(94)90003-5
37.
Brocks
,
W.
,
Cornec
,
A.
, and
Scheider
,
I.
,
2003
, “
Computational Aspects of Nonlinear Fracture Mechanics
,”
Comprehensive Structural Integrity
,
3
, pp
129
209
.10.1016/B0-08-043749-4/03102-5
38.
Pandolfei
,
A.
, and
Ortiz
,
M.
,
2002
, “
An Adaptive Procedure for Three-Dimensional Fragmentation Simulations
,”
Eng. Comp.
,
18
, pp.
148
159
.10.1007/s003660200013
39.
Paulino
,
G. H.
,
Celes
,
W.
,
Espinha
,
R.
, and
Zhang
,
Z.
,
2007
, “
A General Topology-Based Framework for Adaptive Insertion of Cohesive Elements in Finite Element Meshes
,”
Eng. Comp.
,
24
(
1
), pp.
59
78
.10.1007/s00366-007-0069-7
40.
Turon
,
A.
,
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fracture Mech.
,
74
(
10
), pp.
1665
1682
.10.1016/j.engfracmech.2006.08.025
41.
Diehl
,
T.
,
2008
, “
On Using a Penalty-Based Cohesive-Zone Finite Element Approach, Part I: Elastic Solution Benchmarks
,”
Int. J. Adhesion Adhesives
,
28
(
4–5
), pp.
237
255
.10.1016/j.ijadhadh.2007.06.003
42.
Bazant
,
Z.
,
2002
, “
Scaling of Sea Ice Fracture-Part I: Vertical Penetration
,”
ASME J. Appl. Mech.
,
69
(
1
), pp.
11
18
.10.1115/1.1429932
43.
Yang
,
Z.
, and
Frank Xu
,
X.
,
2008
, “
A Heterogeneous Cohesive Model for Quasi-Brittle Materials Considering Spatially Varying Random Fracture Properties
,”
Comp. Meth. Appl. Mech. Eng.
,
197
(
45–48
), pp.
4027
4039
.10.1016/j.cma.2008.03.027
44.
Yang
,
Z.
,
Su
,
X.
,
Chen
,
J.
, and
Liu
,
G.
,
2009
, “
Monte Carlo Simulation of Complex Cohesive Fracture in Random Heterogeneous Quasi-Brittle Materials
,”
Int. J. Solid. Struct.
,
46
(
17
), pp.
3222
3234
.10.1016/j.ijsolstr.2009.04.013
45.
Su
,
X. T.
,
Yang
,
Z. J.
, and
Liu
,
G. H.
,
2010
, “
Monte Carlo Simulation of Complex Cohesive Fracture in Random Heterogeneous Quasi-Brittle Materials: A 3D Study
,”
Int. J. Solid. Struct.
,
47
(
17
), pp.
2336
2345
.10.1016/j.ijsolstr.2010.04.031
46.
Zhou
,
F.
, and
Molinari
,
J.
,
2004
, “
Dynamic Crack Propagation with Cohesive Elements: A Methodology to Address Mesh Dependency
,”
Int. J. Num. Meth. Eng.
,
59
(
1
), pp.
1
24
.10.1002/nme.857
47.
Kärnä
,
T.
,
Lubbad
,
R.
,
Løset
,
S.
,
Mroz
,
A.
,
Dalane
,
O.
,
Bi
,
X.
, and
Xu
,
N.
,
2010
, “
Ice Failure Process on Fixed and Compliant Cones
,” HYDRALAB III Joint User Meeting, Hannover, Germany, pp.
1
4
.
48.
Hetényi
,
M.
,
1946
,
Beams on Elastic Foundation
,
University of Michigan Press
,
Ann Arbor, MI
.
49.
Nevel
,
D. E.
,
1961
, “
The Narrow Free Infinite Wedge on an Elastic Foundation
,” Cold Regions Research and Engineering Laboratory.
50.
Belytschko
,
T.
,
Liu
,
W.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
John Wiley & Sons, Ltd.
,
Chichester, UK.
51.
Shafrova
,
S.
, and
Moslet
,
P. O.
,
2006
, “
In-Situ Uniaxial Compression Tests of Level Ice: Part I — Ice Strength Variability Versus Length Scale
,”
ASME
25th Intl. Conf. on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4–9, Paper No. OMAE2006-92450, pp.
731
739
.10.1115/OMAE2006-92450
52.
Shafrova
,
S.
, and
Moslet
,
P. O.
,
2006
, “
In-Situ Uniaxial Compression Tests of Level Ice: Part II—Ice Strength Spatial Distribution
,”
ASME
25th Intl. Conf. on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4–9, Paper No. OMAE2006-92451, pp.
741
750
.10.1115/OMAE2006-92451
53.
Lubbad
,
R.
,
Moe
,
G.
, and
Løset
,
S.
,
2008
, “
Static and Dynamic Interaction of Floating Wedge-Shaped Ice Beams and Sloping Structures
,”
19th IAHR International Symposium on Ice
, Vancouver, Canada, July 6–11, pp.
179
189
.
54.
Lu
,
W.
,
Løset
,
S.
, and
Lubbad
,
R.
,
2012
, “
Ventilation and Backfill Effect During Ice-Structure Interactions
,”
The 21st IAHR International Symposium on Ice
, Dalian, China, June 11–15, pp.
826
841
.
55.
Lu
,
W.
,
Lubbad
,
R.
,
Serré
,
N.
, and
Løset
,
S.
,
2013
, “
A Theoretical Model Investigation of Ice and Wide Sloping Structure Interactions
,” 22nd Intl. Conf. on Port and Ocean Eng. Under Arctic Conditions, Espoo, Finland, June 9–13, pp.
1
14
.
56.
Lu
,
W.
,
Lubbad
,
R.
,
Høyland
,
K.
, and
Løset
,
S.
,
2014
, “
Physical Model and Theoretical Model Study of Level Ice and Wide Sloping Structure Interactions
,”
Cold Region. Sci. Tech.
, 101, pp.
40
72
.10.1016/j.coldregions.2014.01.007
57.
Lubbad
,
R.
, and
Løset
,
S.
,
2011
, “
A Numerical Model for Real-Time Simulation of Ship-Ice Interaction
,”
Cold Region. Sci. Tech.
, 65(2), pp.
111
127
.10.1016/j.coldregions.2010.09.004
58.
Timco
,
G.
,
1984
, “
Model Tests of Ice Forces on a Wide Inclined Structure
,”
IAHR Ice Symposium II
, pp.
87
96
.
59.
Paavilainen
,
J.
, and
Tuhkuri
,
J.
,
2013
, “
Pressure Distributions and Force Chains During Simulated Ice Rubbling against Sloped Structures
,”
Cold Region. Sci. Tech.
,
85
, pp.
157
174
.10.1016/j.coldregions.2012.09.005
60.
Lewis
,
J. W.
, and
Edwards
, Jr.,
R. Y.
,
1969
, “
Predicting Icebreaking Capabilities of Icebreakers
,” US Coast Guard Office of Naval Engineering.
You do not currently have access to this content.